
13 Roots of a semisimple Lie algebra

Recall that the Killing form K gives a non-degenerate bilinear pairing gα ×
g−α → F. In addition, [e, f ] = K(e, f)ν−1(α) for any e ∈ gα, f ∈ g−α. Also,
K(α, α) 6= 0 for any α ∈ ∆.

For each α ∈ ∆, choose a non-zero E ∈ gα and an F ∈ g−α such that

K(E, F ) = 2
K(α,α) . Let H = 2ν−1(α)

K(α,α) . Then [E, F ] = H , [E, H ] = −α(H)E =

−2E and [F, H ] = α(H)F = 2F (as α(ν−1(α)) = K(α, α)). So the span of E,
F and H is isomorphic to sl2(F).

Lemma 13.1 (Basic lemma for sl2) Let π be a representation of sl2(F) in a
vector space V , and v ∈ V be such that π(E)v = 0 and π(H)v = λv, λ ∈ F.
Then

1. π(H)π(F )nv = (λ − 2n)π(F )nv

2. π(E)π(F )nv = n(λ − n + 1)π(F )(n−1)v

3. If V is finite-dimensional, then λ ∈ Z+, the vectors π(F )jv (0 ≤ j ≤ λ)
are linearly independent, and π(F )(λ+1)v=0.

Proof. (1) and (2) are proved by induction on n; we leave the details to the
reader. For (3), notice that if λ−n+1 were non-zero for all integer n ≥ 1, then
(2) would imply, by induction, that π(F )nv 6= 0 for any n ∈ Z+. In this case
(1) would mean that π(H) has infinitely many eigenvalues, which is impossible
in a finite-dimensional space. Therefore, λ is a non-negative integer.

Next, it follows from (2) by induction that π(F )jv 6= 0 for j ≤ λ. Then (1)
says that π(F )jv is an eigenvector of π(H) that corresponds to the eigenvalue
λ − 2j; therefore v, π(F )v, π(F )2v, . . . π(F )λ(v) must be linearly independent.
Finally, π(F )λ+1(j) must be zero, because otherwise (2) would imply, by induc-
tion, that π(F )nv is non-zero for infinitely many values of n, and π(H) would
have infinitely many eigenvalues, which cannot possibly happen. �

Exercise 13.1 Prove parts (1) and (2) in the basic lemma for sl2(F).

Solution. Not surprisingly, we use induction on n. Let’s start with part (1).
The case n = 0 is given. Assume this is true for some n. Then for n + 1,

π(H)π(F )n+1v = π(F )π(H)π(F )nv − π([F, H ])π(F )nv =

= π(F )((λ − 2n)π(F )nv) − 2π(F )π(F )nv = (λ − 2(n + 1))π(F )n+1v

so, by induction, the statement is true for all n.
In part (2), as much as we’d like to, we cannot begin with n = 0, because

π(F ) may not be invertible. So let’s use n = 1 as the inductive base:

π(E)π(F )v = π(F )π(E)v − π([F, E])v = π(H)v = λv

because π(E)v = 0, π(H)v = λv and [E, F ] = H .
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So for n = 1, this is true. If it is true for some n, then, for n + 1, we write

π(E)π(F )n+1v = π(F )π(E)π(F )n(v) − π([F, E])π(F )n(v) =

= π(F )(n(λ − n + 1)π(F n−1)v) + π(H)π(F )n(v) =

= (n(λ − n + 1) + (λ − 2n))π(F )nv = (n + 1)(λ − (n + 1) + 1)π(F )nv

so, by induction, this statement is also true for all n.

Exercise 13.2 Assume π is a representation of sl2(F) in a vector space V , and
v ∈ V is such that π(F )v = 0 and π(H)v = λv. Prove that π(H)π(E)nv =
(λ+2n)π(E)nv, that π(F )π(E)nv = −n(λ+n− 1)π(E)(n−1)v, and that if V is
given to be finite-dimensional, then −λ ∈ Z+, the vectors π(E)jv, 0 ≤ j ≤ −λ,
are linearly independent, and π(E)−λ+1v = 0.

Solution. Rather than rewrite the proof of the basic lemma for sl2 with
minor changes (which is possible), we’ll reduce this fact to the basic lemma.
Namely, consider the isomorphism ϕ : sl2 → sl2 for which

ϕ(E) = F, ϕ(F ) = E, ϕ(H) = −H

One checks easily that ϕ is a Lie algebra isomorphism. Therefore, the rep-
resentation π′ of sl2 in g defined by π′A(u) = π(ϕ(A))u is indeed a repre-
sentation. Obviously, π′ satisfies the assumptions of the basic lemma, except
that π′(H)v = −λv. Replacing all λ-s by −λ-s in the conclusions of the ba-
sic lemma, we see that, first, π′(H)π′(F )nv = (−λ − 2n)π′(F )nv. Second,
π′(E)π′(F )nv = n(−λ−n+1)π′(F )(n−1)v. And third, if V is finite-dimensional,
then −λ ∈ Z+, the vectors π′(F )jv (0 ≤ j ≤ −λ) are linearly independent, and
π′(F )(−λ+1)v=0. All that’s left is to replace π′(E) by π(F ), π′(F ) by π(E), and
π′(H) by −π(H). Once we do that, the last three statemenbs become the three
statements we need.

Theorem 13.2 In the above notation,

1. dim(gα) = 1 if α ∈ ∆.

2. If α, β ∈ ∆, then {β +nα : n ∈ Z}∩ (∆∪{0}) is a finite connected string.
I.e. it is {β− pα, β− (p− 1)α, . . . β +(q− 1)α, β + qα}, where p, q ∈ Z+

and p − q = 2K(α,β)
K(α,α) . In particular, 2K(α,β)

K(α,α) ∈ Z.

3. If α, β, (α + β) ∈ ∆, then [gα, gβ ] = gα+β

4. If α ∈ ∆, then nα ∈ ∆ iff n = ±1.

Proof. Part (1) is proved by contradiction. Assume dim gα > 1. Consider
the subalgebra aα = FE⊕FF ⊕FH constructed above, where E ∈ gα, F ∈ g−α,

H = 2ν−1(α)
K(α,α) ∈ h and [E, F ] = H , [E, H ] = −2E, [F, H ] = 2F . Since gα and

g−α are non-degenerately paired by K, dim g−α > 1. Therefore, there is a non-
zero v ∈ g−α for which K(E, v) = 0. For that v, [E, v] = K(E, v)ν−1(α) = 0,
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and [H, v] = −α(H)v = −2v. Observe that aα is isomorphic to sl2(F), and it is
represented in g by the adjoint representation. Further, g is finite-dimensional
and contains a non-zero v in g for which ad E(v) = 0 and adH(v) = −2v. This
contradicts part 3 of the basic lemma for sl2, therefore dim gα = 1.

We proceed to part (2). Let q be the largest non-negative integer for which
β + qα ∈ ∆ ∪ {0}; it must exist, because ∆ is a finite set. Pick a non-zero
v ∈ gβ+qα, and again consider the adjoint representation of aα in g. Then
adE(v) ∈ gβ+(q+1)α = {0}, i.e. adE(v) = 0. Also,

adH(v) = [H, v] = ((β + qα)(H))v =

(

2K(β, α)

K(α, α)
+ 2q

)

v

so, once again, the basic lemma for sl2 applies. It tells us that 2K(β,α)
K(α,α) + 2q

lies in Z+, and moreover, β + qα, β + (q − 1)α, . . . β + qα − 2
(

K(β,α)
K(α,α) + q

)

all

lie in ∆ ∪ {0}, because 2K(β,α)
K(α,α) + 2q,

2K(β,α)
K(α,α) + 2q − 2, . . . − 2K(β,α)

K(α,α) − 2q are

eigenvalues of adH .

Denote 2K(β,α)
K(α,α) + q by p, and let p′ be the largest non-negative integer for

which β − pα ∈ ∆ ∪ {0}. Choose a non-zero v′ ∈ gβ−p′α. Then ad F (v′) =

0 (because ad F (v′) ∈ gβ−(p+1)α = {0}), and ad H(v′) =
(

2K(β,α)
K(α,α) − 2p′

)

v′.

Applying the second version of the basic lemma (Exercise 13.2), we conclude that

2p′−2K(β,α)
K(α,α) ∈ Z+, and β−p′α, β−(p′−1)α, . . . β−p′α+2

(

−K(β,α)
K(α,α) + p′

)

all

lie in ∆∪{0}. Denote − 2K(β,α)
K(α,α) +p′ by q′. Since p′ and q are the largest possible,

we have p′ ≥ p and q ≥ q′. But on the other hand, p′ − q′ = p − q = 2K(α,β)
K(α,α) .

So both inequalities must be equalities, i.e. p′ = p and q′ = q. Therefore,
{β + nα : n ∈ Z+} ∩ (∆∪ {0}) = {β − pα, β − (p− 1)α, . . . β + qα} as claimed.

Part (3) follows from this easily. Let α, β ∈ ∆, and let p be the maximum
non-negative integer for which β − pα ∈ ∆. As before, if v 6= 0 is an element

of gα−pβ , then ad(F )v = 0 and ad(H)v =
(

2K(β,α)
K(α,α) − 2p

)

v. So by the second

version of the basic lemma (Exercise 13.2), ad(E)jv 6= 0 if 0 ≤ j ≤ 2p −
2K(β,α)
K(α,α) = p + q. Also, q ≥ 1, because α + β ∈ ∆. Therefore 0 6= ad(E)pv ∈ gβ ,

0 6= ad(E)p+1v ∈ gα+β , and of course, 0 6= E ∈ gα. Hence [gα, gβ ] = gα+β ,
because each of these subspaces is one-dimensional.

Finally, (4) is a consequence of the above. Let β = nα ∈ ∆. Then, by (1),
2K(β,α)
K(β,β) ∈ Z, i.e. 2

n
∈ Z. So all we need to show is that n can’t be 2 (the same

result for −α will then imply that n can’t be −2). However, g2α = [gα, gα] by
(3) and [gα, gα] = 0 by (1). Thus 2α is not in ∆, and n can’t be 2. �
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