13 Roots of a semisimple Lie algebra

Recall that the Killing form K gives a non-degenerate bilinear pairing g, X
g_o — F. In addition, [e, f] = K(e, f)v~(a) for any e € g, f € g_a- Also,
K(a,a) #0 for any a € A.

For each a € A, choose a non-zero E € g, and an F' € g_, such that

K(E,F) = 522 Let H = 2;(’]5)). Then [E,F] = H, [E,H] = —a(H)E =
—2F and [F, H] = o(H)F = 2F (as a(v~!(a)) = K(a,)). So the span of E,

F and H is isomorphic to sla(F).

Lemma 13.1 (Basic lemma for sly) Let 7 be a representation of slo(F) in a
vector space V, and v € V' be such that m(E)v = 0 and n(H)v = Av, A € F.
Then

1. w(H)m(F)"v = (A = 2n)m(F)"v
2. 1(E)n(F)"v = n(A —n + 1)a(F)" Dy

3. If V is finite-dimensional, then X\ € Z,, the vectors n(F)’v (0 < j < \)
are linearly independent, and m(F)*MDy=0.

Proof. (1) and (2) are proved by induction on n; we leave the details to the
reader. For (3), notice that if A —n 4+ 1 were non-zero for all integer n > 1, then
(2) would imply, by induction, that 7(F)™v # 0 for any n € Z. In this case
(1) would mean that m(H) has infinitely many eigenvalues, which is impossible
in a finite-dimensional space. Therefore, A is a non-negative integer.

Next, it follows from (2) by induction that 7(F)7v # 0 for j < A\. Then (1)
says that 7(F)7v is an eigenvector of m(H) that corresponds to the eigenvalue
A — 24; therefore v, 7(F)v, m(F)?v,...7(F)*(v) must be linearly independent.
Finally, 7(F)**1(j) must be zero, because otherwise (2) would imply, by induc-
tion, that 7(F)™v is non-zero for infinitely many values of n, and 7(H) would
have infinitely many eigenvalues, which cannot possibly happen. O

Exercise 13.1 Prove parts (1) and (2) in the basic lemma for sla(F).

Solution. Not surprisingly, we use induction on n. Let’s start with part (1).
The case n = 0 is given. Assume this is true for some n. Then for n + 1,

7(H)m(F)" " = n(F)r(H)r(F)"v — 7 ([F, H))7(F)"v =
= 71(F)(\ = 2n)7(F)"v) — 2n(F)n(F)"v = (A — 2(n + 1))7(F)" " v

so, by induction, the statement is true for all n.
In part (2), as much as we’d like to, we cannot begin with n = 0, because
7m(F) may not be invertible. So let’s use n = 1 as the inductive base:

m(E)n(F)v = 7n(F)r(E)v — n([F, E))v = n(H)v = \v

because 7(E)v =0, 7(H)v = Av and [E, F] = H.



So for n = 1, this is true. If it is true for some n, then, for n + 1, we write

m(E)w(F)" v = n(F)m(E)m(F)" (v) — «([F, E])m(F)" (v) =
=7(F)(n(A = n+ Dr(F*" o) + 7(H)x(F)"(v) =
= (A —n+1)+ O\ —20)(F)™ = (n+ 1)(A— (n +1) + )a(F)"v

so, by induction, this statement is also true for all n.

Exercise 13.2 Assume 7 is a representation of sla(F) in a vector space V', and
v € V is such that 7(F)v = 0 and n(H)v = Av. Prove that n(H)m(E)"v =
(A+2n)m(E)™v, that 7(F)r(E)"v = —n(A4+n— 1)7(E)" Vv, and that if V is
given to be finite-dimensional, then —\ € Z,., the vectors w(E) v, 0 < j < —\,
are linearly independent, and m(E)~**1v = 0.

Solution. Rather than rewrite the proof of the basic lemma for sl with
minor changes (which is possible), we’ll reduce this fact to the basic lemma.
Namely, consider the isomorphism ¢ : slo — sly for which

p(E)=F, oF)=E, ¢H)=-H

One checks easily that ¢ is a Lie algebra isomorphism. Therefore, the rep-
resentation 7’ of sl in g defined by 7’A(u) = 7(¢(A))u is indeed a repre-
sentation. Obviously, 7’ satisfies the assumptions of the basic lemma, except
that 7/(H)v = —Mv. Replacing all A\-s by —A-s in the conclusions of the ba-
sic lemma, we see that, first, «'(H)7'(F)"v = (=X — 2n)7'(F)"v. Second,
7' (E)n' (F)"v = n(=A—n+1)7'(F)»~Dy. And third, if V is finite-dimensional,
then —\ € Z, the vectors 7/(F)’v (0 < j < —\) are linearly independent, and
7' (F)-ADy=0. All that’s left is to replace 7/ (E) by 7(F), 7'(F) by n(E), and
7' (H) by —mw(H). Once we do that, the last three statemenbs become the three
statements we need.

Theorem 13.2 In the above notation,
1. dim(ge) =1 if a € A.

2. Ifa, B €A, then {B+na:n € Z}N(AU{0}) is a finite connected string.
Le. itis{f—pa, B—(p—1)a, ... B+ (¢—1)a, B+ qa}, where p, q € Z 4

andp—q= QK((O?‘(E)) In particular, QII(((ij)) € 7.

3. Ifa, B, (a+B) € A, then [ga, 95] = ga+s
4. If a € A, then na € A iff n = +1.

Proof. Part (1) is proved by contradiction. Assume dim g, > 1. Consider
the subalgebra a, =FE®FF®FH constructed above, where F € g, F' € g_,,

H = QKV(QQ) € hand [E,F] = H, [E,H| = —2E, [F,H] = 2F. Since g, and
g—q are non-degenerately paired by K, dimg_, > 1. Therefore, there is a non-

zero v € g_g, for which K(E,v) = 0. For that v, [E,v] = K(E,v)v~!(a) =0,




and [H,v] = —a(H)v = —2v. Observe that a, is isomorphic to slo(F), and it is
represented in g by the adjoint representation. Further, g is finite-dimensional
and contains a non-zero v in g for which ad E(v) = 0 and ad H(v) = —2v. This
contradicts part 3 of the basic lemma for sls, therefore dim g, = 1.

We proceed to part (2). Let ¢ be the largest non-negative integer for which
B+ qa € A U{0}; it must exist, because A is a finite set. Pick a non-zero
U € gg+qa, and again consider the adjoint representation of a, in g. Then
ad E(v) € gg4(g+1)a = 10}, i.e. ad E(v) = 0. Also,

o H(v) = [f1,0] = (8 + a0 = (52 12 ) o

S0, once again, the basic lemma for sle applies. It tells us that 2;(((?’5)) + 2¢q

lies in Z, and moreover, 8+ qo, S+ (¢ — D, ... B+ qav — 2 (g(ﬁ’o‘) + q) all

(or,00)
lie in A U {0}, because 2;((%1,5)) + 2¢, 2;((%5,5)) +29—2,...— 2}1{(((065,3)) — 2q are
eigenvalues of ad H.
Denote 2£0:) | g by p, and let p’ be the largest non-negative integer for

which 8 — pioi(oéa)A U {0}. Choose a non-zero v’ € gg_po. Then ad F(v') =
0 (because ad F(v') € g3—(p+1)a = 10}), and ad H(v') = (215((5;)) - 2p’) v’
Applying the second version of the basic lemma (Exercise 13.2), we conclude that
2p’—2§§§:3§ €Zy,and f—pa, B—(p'—Da, ... f—p a+2 (—ggggg +p') all

lie in AU{0}. Denote — 2K(5,o) +p’ by ¢’. Since p’ and q are the largest possible,

K(a,)
we have p’ > p and ¢ > ¢’. But on the other hand, p’ — ¢ =p—¢q = 2;(((2?"5)).

So both inequalities must be equalities, i.e. p’ = p and ¢’ = q. Therefore,
{B+na:neZi}N(AU{0}) ={8—pa, B—(p—1a, ... B+ qa} as claimed.

Part (3) follows from this easily. Let o, 8 € A, and let p be the maximum
non-negative integer for which § — pa € A. As before, if v # 0 is an element

of ga—pg, then ad(F)v = 0 and ad(H)v = (2;(((355)) - 2p> v. So by the second

version of the basic lemma (Exercise 13.2), ad(E)v # 0 if 0 < j < 2p —

2}5(%5),5)) =p+q. Also, ¢ > 1, because a + 8 € A. Therefore 0 # ad(E)"v € gg,

0 # ad(E)P™v € ga4p, and of course, 0 # E € g,. Hence [ga,85] = Ga+ss
because each of these subspaces is one-dimensional.
Finally, (4) is a consequence of the above. Let § = na € A. Then, by (1),

2;({((5’;)) € Z,ie. % € Z. So all we need to show is that n can’t be 2 (the same
result for —a will then imply that n can’t be —2). However, goq = [ga, 8a] by
(3) and [gqa, ga] = 0 by (1). Thus 2« is not in A, and n can’t be 2. O



