Fall 2004

Lecture 14

Prof. Victor Kač

Scribe: Maksim Lipyanskiy

Recall that $g = h \oplus (\bigoplus_{\alpha \in \Delta} g_{\alpha})$, dim $g_{\alpha} = 1$ and h is abelian. Let us compute the Killing form on h: $K(h_1, h_2) = tr_g(ad(h_1)ad(h_2)) = tr_h(ad(h_1)ad(h_2)) + \sum tr_{g_{\alpha}}(ad(h_1)ad(h_2))$ Thus, $K(h_1, h_2) = \sum_{\alpha} \alpha(h_1)\alpha(h_2)$. On h^* , $K(\lambda, \mu) = \sum_{\alpha} K(\lambda, \alpha)K(\mu, \alpha)$.

Theorem 4. (a) Δ span h^* over \mathbb{F} .

(b) $K(\alpha, \beta) \in \mathbb{Q}$ if $\alpha, \beta \in \Delta$

(c) K on $h^*\mathbb{Q}$ is a positive-definite, \mathbb{Q} -valued, symmetric bilinear form.

Proof. (a) In the contrary case, there exists a nonzero $h_1 \in h$ such that $\alpha(h_1) = 0$ for all $\alpha \in \Delta$. Hence $[h_1, g_\alpha] = 0$, and $[h_1, h] = 0$ hence h_1 is in the center which is not possible. (b) Recall that $2K(\alpha, \beta)K(\alpha, \alpha)^{-1} = p - q \in \mathbb{Z}$. But by the formula above $K(\alpha, \alpha) = \sum K(\alpha, \gamma)^2$ thus, $4K(\alpha, \alpha)^{-1} = \sum_{\gamma} 2K(\alpha, \gamma)K(\alpha, \alpha)^{-1} \in \mathbb{Z}$. The result follows from polarization identity. (c) $K(\lambda, \lambda)$, $(\lambda \in h^*) = \sum_{\alpha} K(\alpha, \lambda)^2 \ge 0$ with equality iff all $K(\alpha, \lambda) = 0$. Hence $\lambda = 0$ since K on h is nondegenerate.

Proposition. If g is semisimple and $a \subset g$ is an ideal then K restricted to a is nondegenerate and $g = a \oplus a^{\perp}$. Thus, a is semisimple.

Proof. $K(a \cap a^{\perp}, a \cap a^{\perp}) = 0$, hence by Cartan's criterion $a \cap a^{\perp}$ is a solvable ideal. This contradicts the semisimplicity of g. Since $\dim(g) \leq \dim(a) + \dim(a^{\perp})$ the result follows.

Definition. A Lie algebra is *simple* if it is not abelian and has no proper nonzero ideals.

Corollary. g is semisimple iff it is a direct sum of simple Lie algebras.

Exercise 14.1 Show that decomposition is unique up to permutation and any ideal is a subsum of the ideals in decomposition.

Solution. It suffices to prove the second statement. So let $g = \bigoplus_i g_i$ where the g_i are simple. If a is an ideal $a \cap g_i$ is either zero or g_i . We need only establish that a is homogeneous, i.e. $a = \bigoplus_i a \cap g_i$. If a has a nontrivial projection to g_i we have $[g_i, a] = g_i$ since g_i has trivial center. But $[g_i, a] \subset a$.

Let $g = g_1 \oplus g_2$ be a direct sum of semisimple Lie algebras. If h_1 , h_2 are Cartan subalgebras then $h_1 \oplus h_2$ is a Cartan subalgebra. If $g_1 = h_1 \oplus \bigoplus_{\alpha \in \Delta_1} g_\alpha, g_2 = h_2 \oplus \bigoplus_{\beta \in \Delta_2} g_\beta$ then g has root space $\Delta = \Delta_1 \sqcup \Delta_2$ where we extend Δ_i by zero to the other Cartan subalgebra.

This decomposition has the property that: (*) If $\alpha \in \Delta_1$, $\beta \in \Delta_2$ then $\beta + \alpha \notin \Delta \cup 0$.

Definition. A set of roots is *indecomposable* if there is no nontrivial decomposition such that (*) holds. Clearly an indecomposable semisimple Lie algebra must be simple. Δ is indecomposable iff for any $\alpha, \beta \in \Delta$ there exists a sequence $\alpha = \gamma_1, ..., \gamma_n = \beta$ such that $\gamma_i + \gamma_{i+1} \in \Delta$ or 0.

Example 1. $g = sl_n (n \ge 2)$, h = diagonal matrices with trace zero. Let $\epsilon_i(a_{jj}) = \delta_{ij}$ and restrict ϵ_i to h. The eigenvectors for the Cartan subalgebra are E_{ij} . Note that the corresponding root is $\epsilon_i - \epsilon_j$. Hence we have root space decomposition $sl_n \mathbb{F} = h \oplus \bigoplus_{i,j} \mathbb{F}E_{ij}$. The root space $\epsilon_i - \epsilon_j$ where

 $i \neq j$ is indecomposable. Indeed, $(\epsilon_i - \epsilon_j) + (\epsilon_l - \epsilon_k)$ is a root or zero if j = l and $(\epsilon_i - \epsilon_j) + (\epsilon_j - \epsilon_l)$, $(\epsilon_j - \epsilon_l) + (\epsilon_l - \epsilon_k)$ are roots or zero otherwise.

Example 2. $g = so_n(\mathbb{F}) = A \in gl_n(\mathbb{F})$ such that $A^T B + BA = 0$. The best choice of B is $B_{i,n+1-i} = 1$ and zero otherwise.

Exercise 14.2 $A \in so_n(\mathbb{F})$ iff A' = -A where $A'_{ij} = A_{n-j+1,n-i+1}$. Solution. We have $(AB)_{ij} = A_{i,n+1-j}$ and $(BA)_{ij} = A_{n+1-i,j}$. From this it is easy to see that $A^TB + BA = 0$ iff $A_{n+1-j,i} + A_{n+1-i,j} = 0$. Make the substitution i' = n + 1 - i. We have: $A_{n+1-j,n+1-i'} + A_{i',j} = 0$ which is what we wanted.

In this case the Cartan subalgebra h is diag $(a_1, ..., a_r, -a_r, ..., -a_1)$. The roots are $F_{ij} = E_{ij} - E_{n+1-j,n+1-i}$ where the i, j are determined below. Observe that $\epsilon_i = -\epsilon_{n+1-i}$ when restricted to h. F_{ij} is a root vector with root $\epsilon_i - \epsilon_j$. Note that a basis for the root system is formed by the vectors $e_1, ..., e_r$ where either n = 2r or n = 2r + 1. In the case n = 2r + 1 the roots are $\{\epsilon_i - \epsilon_j, \epsilon_i, -\epsilon_i, \epsilon_i + \epsilon_j, -\epsilon_i - \epsilon_j\}$ where $i \neq j$ and $i, j \leq r$. This follows from the fact that $e_{r+1} = 0$ and that $\epsilon_i = -\epsilon_{n+1-i}$.

The case n = 2r is almost identical. Here the roots are $\{\epsilon_i - \epsilon_j, \epsilon_i + \epsilon_j, -\epsilon_i - \epsilon_j\}$ where $i \neq j$ and $i, j \leq r$.

Exercise 14.3 Do the case r = 2n. Solution. See above.

Exercise 14.4 (a) $\Delta_{so_{2r+1}}$ is indecomposable iff $r \ge 1$. Thus so_{2r+1} is simple iff $r \ge 1$.

(b) $\Delta_{so_{2r}}$ is indecomposable iff $r \geq 3$.

 $\Delta_{so_4} = \{\pm(\epsilon_1 - \epsilon_2)\} \cup \{\pm(\epsilon_1 + \epsilon_2)\}, \text{ Thus, it is not simple. } (so_2 \text{ is abelian}).$

Solution. (a) Notice that each ϵ_i is connected to ϵ_j . Note the obvious fact that roots are connected to their inverses. Furthermore, each $\pm \epsilon_i \pm \epsilon_j$ is connected to an $\pm \epsilon_i$ by choosing the sign of this last root judiciously.

(b) Note that $\pm \epsilon_i + \mu \epsilon_j$ is connected to $-\mu \epsilon_j \pm \epsilon_k$ where i, j, k are distinct and $\mu = \pm 1$ $(r \ge 3)$. We have shown that one can change one index of any root without leaving the component. Thus we can connect all roots by changing one index at a time.