LECTURE 18: CLASSIFICATION OF ABSTRACT CARTAN
MATRICES / DYNKIN DIAGRAMS

PROFESSOR: VICTOR KAC
TRANSCRIBED BY: STEVEN SIVEK AND ALEXEY SPIRIDONOV

1. EXAMPLES OF DYNKIN DIAGRAMS

In the examples and exercises that follow, we will compute the Cartan matrices
(as described in the previous lecture) for the indecomposable root systems that we
have encountered earlier. We record these as elegant Dynkin diagrams, summarized
in Figure 1.1. Later in the lecture, we will prove that these are actually all the
possible indecomposable root systems. We also compute extended Dynkin diagrams
specifically for the purposes of this proof.
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FIGURE 1.1. Dynkin diagrams of all the indecomposable root sys-
tems, from top to bottom: A,, B,.,C,, D,, Es, Bz, Eg, Fy, Gs.
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In the following examples, the rank of the root system is always denoted by r,
and we get simple roots ay, ..., a,. The lowest negative root, used in the extended
Dynkin diagram is denoted ag. Perhaps the most detailed explanation of how to
compute a Cartan matrix is given in Exercise 1.

Example 1.1. A;: (g5,¢5) = i, A = Ay, m) = {&i —¢gjli,j e [r+ 1]} CV,
where V is the subspace of @/ Re;, on which the sum of coordinates (in the basis
{ei}) is zero.

Take f € V* given by f(e1) =r+1, f(e2) =7,..., f(er41) = 1; hence, f # 0 on
A, and f is integer-valued on all the roots.

Then, Ay = {&; —¢;|i < j}. What is II? Clearly, a = &; — ¢;11 € II, since
f(a) = 1. There are r simple roots altogether (since II spans V') and r such «, so
II = {Oéi =&; — 5i+1}§:1-

For the Cartan matrix, recall that:

2 -1 0 0
% "\ -1 2 -1 :
Q;, Q4
A= <7J) - B
(a, ) i,j=1 0 b2 0
SR
0 0 -1 2

Hence, the Dynkin diagram in Figure 1.1a.

The largest root is § = &1 — €,41, 80 ap = €,4+1 — €1 (ap denotes the lowest
negative root). This yields the extended Dynkin diagram (from the matrix on
2(aq,05)

roots ag, o . . ., oy, denoted A = ( ) )) in Figure 1.1a.

(v

Example 1.2. B.: A=A, . ) ={Fei+e;(i #j), xei}j ;. CV = D._, Re,.
Take the f analogously to A, (but we have r, rather than r + 1 roots now):
f(gl) :T7"'7f(5r) =1
Then, Ay = {e; +¢;(i # j),es —€;j(i < j),&i}, and f =1 for &; — £;41 and ¢,.
Hence Il = {g; —€;41 (i =1,...,r—1),&,}. The Cartan matrix is almost identical,

except that A, ,_1 = % =2(ap, p_1) = —2, 80
2 -1 0 0
-1 2 -1
A= 0 -1 2 0
S
0 0o -2 2
The lowest root is ag = — (g1 + £2), so we get the Dynkin diagrams in Figure 1.1b.

Example 1.3. C;: A = A, ). The roots are the same as above, except +e¢;
becomes +2¢;; we also take the same f. Then, f(e;—g;41) =1for:=1,2,...,r—1
(label these simple roots a1, ..., a,—1), and we need an rth simple root. We might
only possibly get f = 2 by summing some of the preceding «;. However, it’s
impossible to obtain 2¢, this way. Hence, Il = {¢; —e;41 (i =1,...,7 — 1), 2¢,}.

The new Cartan integers are M = -2, and % = —1, which gives
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us:
2 —1 0 0
-1 2 -1
A= o -1 2 B E
o
0 0 -1 2

and the Dynkin diagram in Figure 1.1c. The highest root is § = 2¢1, so ap = —2¢1,
and we get the extended Dynkin diagram in Figure 1.1c.

Example 1.4. D,: A = A, ;) = {Fei £;(0 # Jj)}
fler)=r—1,...,f(e,)=0.

Then A ={e; +¢;(i < j)},and I = {e1 —e9,...,6r-1 — &, -1 + &, } since we
get f(a;) =1 for all s.

Define f € V* by

T
i,j=1"

Compute
2 -1 0 0
-1 2 -1
e 0o -1 0 0 7
2 -1 -1
: 0o -1 2 0
0o ... 0O -1 0 2
so we have the Dynkin diagram in Figure 1.1d. 3
Then, 0 = €1 + €2, 80 g = —£1 — €2, so we get the D, in Figure 1.1d.

Example 1.5. Eg: A = Ap, = {te; ¢;(i # j),5(fe1£eat-- +eg)}f g,

(even number of + signs)

with V = @le Re;. Let f(e1) =23, f(e2) =6, f(e3) =5, ... f(es) = 0; we have an
even number of odd f(g;), so f is integer on all roots. Then,
1
A ={eitei(i<j),= (e1+ead - Feg)}s

i,j=1
(even number of + signs)

and
1
H:{52—€3,E3—54,...67—68,5(81 —62—"'—E7+58)}.
In particular, f(o;) = 1 for all i; § = 1 + €2, s0 ap = —e1 — €2 and we get the

diagrams Fg and FEjg in Figure 1.1e.

Exercise 1. From Ezercise 16.4, we have:

1
AE7 = {Ei—f;‘j(lSi;ﬁjSS),—(:EElﬂ:Eg:l:-"ﬂ:Eg)}
2 4+signs
o 1 1
Apy = {ei—egj(1<i#j<6),£(e7 — es), 5(151 igz +--Fe) £ 5(57 —e3))}-
signs

Perform the same analysis as in the Examples for F; and Eg. Show that their
diagrams are as in Figure 1.1f,g.
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For E;, we will pick f(e;) so that all roots have non-zero integer values. For this,
we need f(e;) to be distinct integers (hence +e; & ¢; are all integer and non-zero).
Additionally, we want an even number of the f(g;) to be odd. That way, roots of
the second type also have integer values. Take f(e2) =7, f(e3) =6,..., f(es) = 1;
then, a1 = e3 —e3,a0 = €3 — &4, ..., = €7 — €g are all simple roots with value 1.
We have (a;,a;) = —1if |i — j| = 1 and 0 otherwise so far, and («;, ;) = 2. There
is just one more simple root, and it must be of the second type. We need to choose
f(z1) appropriately. In order for f to be integer-valued on all roots, f(g1) must be
even. To avoid a zero-valued root, we will make it sufficiently large that

1
F(fE) ~T—6-5-44+3+2+1)>0,

since that’s the closest we can get to zero if f(e1) is large. Simplifying, we have:
f(e1) even, and f(e1) > 16, so we'll take f(e;) = 18. Then f(a7) = 1,a7 =
%(51 —e9g—€3—¢€4 —€5+6¢+e7+€g), and we have the last simple root. We have
(aiyar) = 0 for all 1 < i # 4 <6, with (a4, a7) = —1 and (a7, a7) = 2. Hence,
all the connections are simple, and we have the right diagram. The highest root is
clearly 6 = g1 — &g Lot , 80 ag = €8 — €0, which connects (simply) only with a7,
so we have the right extended diagram too.

For Eg, we choose the same f(e2),... f(gs). This gives us the following simple
roots: a3 = €3 — €3,...,004 = €5 — €g,05 = E7 — €8, With (oai,oaj) = _5ij if
1<i,7 <4;all (o, ;) =2, and a5 doesn’t connect with any of these roots. Now,
to choose the right f(e1), we assume it’s large and take the smallest non-negative
number we can get:

1
5(f(e) = T—6-5+4+3-2+1>0,

so f(e1) > 12. As before, we want it to be even, and so pick f(e1) = 14, which
gives the last simple root f(ag) =1, a6 = %(51 —eg—e3—e4testeg—ertes). ar
connects only with as and as; (as,a6) = —1, (a5, 06) = —1 and (ag, @) = 2. So,
the connections are all simple, and we get the correct diagram. The highest root in
this caseis = 1 — &g A 11, so avg = €¢ — €1, which connects only with a4, which,
again, gives the right extended diagram.

Exercise 2. From FExercises 16.5 and 16.6, we have:

1
AF4 = {:l:Ei:EEj,:EEi,§(:|:€1 :|252:|:€3:|:€4)}71§i7éj§4
Ag, = {ei—¢j,£(ei+e;—2e)},1<4,4,k <3, all distinct

Perform the same calculations for Fy and G2, and show that they have the diagrams
in Figure 1.1h,i.

Here, we proceed exactly as in the previous exercise. For Fy, we pick f(e1) =
8, f(e2) = 3, f(e3) = 2, f(e4) = 1, which gives us the simple roots a; = e3—e3, @z =
€3 —E4,003 = €4,04 = %(51 — &9 —€3 —€4), with simple connections between «; and
each of as, as, ay. Additionally, there is a double-arrow connection from a5 to as,
so we get the correct diagram. oy = —e1 — &3 <. ~11 connects up only with aq,
which gets us the extended diagram.

For G, pick f(e1) =4, f(e2) = 2, f(e3) = 1, which gives us simple roots a; =
€9 —e3z and ag = €1 + €3 — 269, with (041, 011) e 2,(0[2, 042) =6, and (041, 042) = -3,
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(2) (b) (c) (d)
o O o—0O Oo—=0 =0
o0 O=—0,

F1GURE 2.1. The four Dynkin diagram connection types, corre-
sponding to the four types of 2 x 2 Cartan matrix minors.

~ !

(a) (b)

FIGURE 2.2. Some diagrams for the simply laced case.

FIGURE 2.3. A loop with one double-connection.

which gives the desired connection. oy = €2 + €3 — 23 A —5, with a simple
connection to as, as in the extended diagram.

2. CLASSIFICATION OF DYNKIN DIAGRAMS

Theorem 2.1. The Dynkin diagrams of all indecomposable Cartan matrices are
A’I‘7 BT‘7 C’r'7 D’I‘7 E87 E77 E67 F47 GQ'

Proof. We have to choose connected graphs with connections of the 4 types depicted
in Figure 2.1, such that the matrix of any subgraph has a positive determinant. In
particular, our graphs contain no extended Dynkin diagrams as induced subgraphs,
since these have determinant 0.

Part 1. Classify all “simply laced” Dynkin diagrams, i.e. using only 0- or 1-edge
connections (which correspond to a symmetric A). Such a graph contains no cycles,
since those are A,. If there are no branching points, we get A,. Next, such a graph
contains at most 1 branching point, since otherwise it contains DT. If there is a
branching point, one has at most 3 branches, since Dy is the 4-star in Figure 2.2a.
Thus, we are left with a graph of the form T}, , .(p > ¢ > r > 2) depicted in Figure
2.2b. But the graph cannot contain any of EG = T3)373,E~‘7 = T4)472,E8 = T673)2,
hence the only possibilities are D,., Eg, E7, Es. Why? Suppose r = 3, then p > ¢ >
3, so it contains T3 3 3. Hence, r = 2. From E7, we can’t have ¢ > 4 = ¢ = 2,3,
and we get p < 5 likewise.
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Part 2. Classify all non-simply laced diagrams, i.e. those containing double- or
triple-edge connections (corresponding to non-symmetric A). This can be done by
a more complicated case analysis. However, we’d like an effective way of ruling out
diagrams like the one in Figure 2.3. This can be done by computing many large
determinants, but we would rather argue using the following;:

Exercise 3. Prove the following two useful lemmas:

Lemma 2.2. Let

2 —a 0 --- 0
—b
A= 0
. Anfl
0

Then, det A = 2det A,,_1 —abdet A,,_o, where A,_5 is A with the first and second
rows and columns deleted.

Proof. Denote by A\(i,j) the matrix A with the ith row and jth column removed.
In particular, A, = A\(1,2)\(1,1).

To prove this lemma, we expand the determinant by minors along the first row,
getting det A = 2det A,,_1 + adet A\(1,2); then, we expand det A\(1,2) along its

first column, which gives det A = 2det A,,_1 — abdet A,,_2, as desired. O
Lemma 2.3. Let
C1 —ai 0 s 0 —bn
—bl C2 —a9 0 0
0 —b2 C3
A= . .
0 . . —Qn—2 0
0 . _bn—2 Cn—1 —0p-1
—an, 0 . 0 —bp—1 Cn

Then, det(A — e€F12) = det A — e(bydet A—o + agas...ay). In particular, if
det A,_o>0,b; >0, as...a, >0, and € > 0, then det A — eF15 < det A.

Proof. To prove this lemma, we expand the determinant of A — eF15 along the
second column to get

(a1 + €)det A\(1,2) 4 co det A\(2,2) + ba det A\(3,2) = det A + edet A\(1, 2).
A\(1,2) looks like this:

—b,  —as 0 e 0
0 c3 :
—Qp—9 0
0 o —by_o Cno1 —Qp_1
—a, - 0 b1 cn

If we expand its determinant along the first column, we get —b; det A\(1,2)\(1,1)+
(—=1)""ta, det A\(1,2)\(n—1,1). The first part of the expression is simply —b; det A,,_s.
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O—C=0 OO0 =0=0 C=C=0
=0 O&=C=0

det =0 det =0 det <0 det <0

FIGURE 2.4. Possible neighbors of G5 in a diagram.

As for the second part, the matrix we get is:

—as 0 . 0
C3
)
—Aanp—2 0
_bn—2 Cn—1 —0n-1

which is lower triangular with a diagonal consisting of all a;, 2 < i < n — 1,
hence with determinant (—1)"~2aqas3 .. .a,_1. Putting all this together, we get the
desired

det A + 6(—b1 det An,Q — a20a3 ... CLn).

O

Lemma 2.3 implies that in the non-simply laced case, there are no cycles as well.
This is because det A,_; = 0; so, any other cycle with subdiagrams of positive
determinant must have determinant < 0 by the lemma. For example, the diagram
in Figure 2.3 has A = Ay — E1o, 50 det A < 0.

Next, looking at the extended Dynkin diagrams we calculate that if the diagram
contains G (Figure 1.1i) it must be G2, by Lemma, 2.2. Otherwise, it must contain
one of the possibilities in Figure 2.4, none of which have suitable determinant: their
Cartan matrices are of the form

2 —a O 9 1
A= —b 2 -1 :>An1—<_3 9 >andAn2—(2)
0 -3 2

Hence, by Lemma 2.2, det(A) = 2det(A,,—1) — abdet(A,,—2) = 2(1 — ab), which is
zero or negative since a,b > 0. (The matrix of the second graph in the figure is
actually AT, but all the determinants are the same.)

It remains to look at the case when we have only simple or double connections.
Looking at the extended Dynkin diagrams, C,. (in Figure 1.1¢) cannot be a subdi-
agram. The variants with flipped arrow directions also don’t work. They are ob-
tained from the extended Cartan matrix A of C’Tby replacing some of A A1, Ay
by their transposes, which doesn’t change any of the determinants in the calcula-
tion. Thus, by Lemma 2.2, their determinants are also 0.

Therefore only one double connection is possible. But, then we cannot have
branching points, since B, contains a double edge and a branching point. So, the
only remaining case is a line with a left-right double edge, having p single edges
to the left, and ¢ single edges to the right. Fy has p = 2,¢ = 1; its transpose has
p =1,q = 2. Hence, if the diagram contains F}, it must be Fy. Otherwise, either
p=0or g =0, and we have B, or C,.

O
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We have now shown that any finite-dimensional simple Lie algebra yields one of
a very restricted set of Dynkin diagrams (and hence Cartan matrices). The next
step in the classification of semisimple Lie algebras will be to give a construction as-
sociating an abstract Cartan matrix to a Lie algebra, and hence to prove that these
four classes plus five exceptional algebras are in fact the only finite-dimensional

simple Lie algebras.



