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In the course of this lecture, F denotes an algebraically closed field of characteristic 0, g denotes a
finite dimensional Lie algebra over F, h is a nilpotent subalgebra of g, and π is a representation of
h in a finite dimensional vector space V over F.

Last time we proved the validity of the generalized weight space decomposition:

V =
⊕

λ∈h∗

Vλ,

where Vλ is the generalized eigenspace Vλ = {v ∈ V |(π(h) − λ(h))Nv = 0 for N >> 0}. In
particular, taking the adjoint representation on g, we get the generalized root space decomposition:

g =
⊕

α∈g∗

gα,

where gα is the generalized rootspace gα = {g ∈ g|(ad(h)−λ(h))N g = 0 for N >> 0}. The reasons
for calling such a decomposition a root space decomposition are historic. A relation between these
two decompositions is given by π(gα)Vλ ⊂ Vα+λ, which follows from a proposition we proved in
lecture 6, namely that π(ga

α)V a
λ ⊂ V a

α+λ. Futhermore, considering π to be the adjoint representation
we obtain that [gα, gβ] ⊂ gα+β . These two relations play a very important role in the structure and
representation theory of Lie algebras.

A digression to topological spaces

Definition 1 A topological space is a set X together with a collection of its closed subsets, subject
to the following axioms:

(i) X and ∅ are closed

(ii) the union of any finite collection of closed subsets is closed

(iii) the intersection of any collection of closed subsets is closed

(iv) (weak separation axiom) given x, y ∈ X, x 6= y, there exists a closed subset F such that x ∈ F

and y 6∈ F .

Definition 2 A set U ⊂ X is called open if there exists a closed set V such that U = X \ V .

Note that the weak separation axiom means that for any x 6= y from X there exists an open set U

such that x ∈ U and y 6∈ U .

Definition 3 The Zariski topology is a topology defined on X = F
n such that a closed subest is

the set of common zeros of a set of polynomials in n indeterminates {Pα(x)}α∈I , where I is some
index set that could be infinite.

1



Exercise 7.1. Prove that the Zariski topology is a topology.

Given a set S of polynomials we denote by V(S) ⊂ F
n the set of common zeros of the polynomials

in S. The notation V stands for variety. Expressed with this new notation all the closed subests of
the Zariski topology on F

n are of the form V(S) for some set S of polynomials. A special case of a
variety is a hypersurface V(P ) where P is a given nonconstant polynomial. Note that by definition,
any closed subset which is not the whole F

n lies in some hypersurface.

Solution to Ex.7.1. We need to check the four axioms for a topological space:

(a) X and ∅ are closed since V(0) = X, and V(1) = ∅

(b) The union of any finite collection of closed sets is closed:

Let V(S1) and V(S2) be two closed sets and let S = {f1f2|f1 ∈ S1and f2 ∈ S2}. Then, if x ∈
V(S1) ∪ V(S2), then for any f1 ∈ S1, f2 ∈ S2, f1f2(x) = 0, as either f1(x) or f2(x) is zero. Thus
V(S1) ∪ V(S2) ⊂ V(S).

Conversely, if x ∈ V(S) and x 6∈ V(S1), then there is an f1 ∈ V(S1) such that f1(x) 6= 0, and so
f2(x) = 0 for all f2 ∈ S2, thus x ∈ V(S2), therefore V(S) ⊂ V(S1) ∪ V(S2).

We have obtained that V(S) ⊂ V(S1) ∪V(S2), and this solves the problem as we can now perform
induction since we have a finite collection of sets.

(c) The intersection of any collection of closed subsets is closed:

Let {V(Sα)}α∈I be any collection of closed subsets. We shall show that ∩α∈IV(Sα) = V(∪α∈ISα).

Indeed, id x ∈ ∩α∈IV(Sα), then f(x) = 0 for all f ∈ ∪α∈ISα, thus ∩α∈IV(Sα) ⊂ V(∪α∈ISα).

On the other hand, if f(x) = 0 for all f ∈ ∪α∈ISα, then x ∈ V(Sα) for every α ∈ I, and so
V(∪α∈ISα) ⊂ ∩α∈IV(Sα). Therefore, ∩α∈IV(Sα) = V(∪α∈ISα) and so ∩α∈IV(Sα) is closed.

(d) Weak separation axiom:

Let x 6= y be in X and define fi(z) = zi − xi for each i ∈ [n] (X = F
n), where xi, zi denote the ith

coordinates of x and z, respectively. Then, V({fi}i∈[n]) = {x}, thus F = {x} is a closed subset of
X containing x and not containing y.

Proposition 1 Suppose that F is an infinite field and n ≥ 1.

(a) The complement to a hypersurface in F
n is an infinite set. In particular the complement to any

Zariski closed subset not equal to F
n is an infinite set.

(b) Every two non-empty Zariski open subsets have non-empty intersection.

(c) If a polynomial Q(x) vanishes on a non-empty Zariski open subset, then P (x) ≡ 0.

Proof. (a) Perform induction on n.

The base case for n = 1 is easy, since any polynomial p has finitely many zeroes, thus V(S),
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S = {p}, is finite and V(S) is finite even so more if S contains more than one polynomial. Thus,
the complement to any Zariski closed subset not equal to F is an infinite set.

If P = P (x1, x2, . . . , xn) 6= 0, then write P = a0(x̄)xN
i + a1(x̄)xN−1

i + · · · + aN (x̄), where x̄ =
(x1, x2, . . . , x̂i, . . . , xN ) and a0(x̄) 6= 0. By the inductive assumption there are infinitely many points
for which a0(x̄) 6= 0 and for each such point there is a value of xi for which P (x1, x2, . . . , xn) 6= 0.
So there are infinitely many points where P does not vanish.

(b) A non-empty Zariski open subset contains the complement to a hypersurface V(P ). Taking two
non-empty Zariski open subsets they contain the complements to V(P1) and V(P2), respectively.
Therefore, their intersection contains complement to their union, which is V(P1)∪V(P2) = V(P1P2),
and by (a) it contains infinitely many points.

(c) If a polynomial P 6≡ 0 and vanishes on a non-empty Zariski open subset U , then we know
that V(P ) is a hypersurface. Furthermore, since the intersection of the complement of V(P ) and
U non-empty by (b), we obtain that for x in the intersection of the complement of V(P ) and U

P (x) 6= 0 and P (x) = 0, contradiction.

Regular elements

Let a ∈ g, where g is a d-dimensional Lie algebra (d < ∞) over the field F. Consider the charac-
teristic polynomial of ad a:

detg(ad a − λI) = (−λ)d + (trgad a)λd−1 + · · · + detgad a.

Note that ad a is a singular operator since (ad a)a=[a, a]=0, hence, detgad a = 0, i.e. the char-
acteristic polynomial of ad a has a vanishing constant term. Write det(ad a − λI) = (−λ)d +
cd−1(a)λd−1 + · · · + cr(a)λr, where the coefficients cd−1, cd−2, . . . , c0 are polynomial functions on g

and r is the smallest integer such that cr(a) 6≡ 0 (recall that c0 ≡ 0).

Definition 4 The above r is called the rank of g. An element a ∈ g is called regular if cr(a) 6= 0.

Proposition 2 (a) The inequalities 1 ≤ r ≤ d hold, where r is as above, and d is the dimension
of the Lie algebra g.

(b) The equation r = d holds if and only if g is a nilpotent Lie algebra.

(c) If g is a nilpotent Lie algebra, then the set of non-regular elements of g is g, whereas if g is not
nilpotent, then the set of non-regular elements is a complement to a hypersurface in g. In particular,
the set of regular elements is Zariski open, and g contains infinitely many regular elements if F is
an infinite field.

Proof. The statement of (a) follows since c0 ≡ 0.

In (b) r = d means that det(ad a−λI) = (−λ)d, which means that ad a is a nilpotent operator for
all a, which is the case if and only if g is nilpotent (by Engel’s theorem).
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(c) If g is nilpotent, then r = d and cd ≡ 1, therefore every element of g is regular. If g is not
nilpotent, then we shall use the statement of an exercise that we shall proof later.

Exercise 7.2. The polynomial cr(x) is homogeneous of degree d − r.

Indeed, if g is not nilpotent, then r 6= d, thus cr is a non-constant polynomial, and thus the set of
non-regular elements of g is the hypersurface V(cr(x)). But, by Proposition 1 the complement to
this hypersurface is infinite as F is infinite.

Solution of Ex.7.2. We shall actually prove the statement for all cl not only for cr. Note that
the determinant of a matrix A = (ai,j) is a homogeneous polynomial in aij, thus, the determinant
of ad a − λI is homogeneous of degree n in aij, aii − λ, i 6= j, where A = ad a. It follows that
det(ad a−λI) is homogeneous in aij and λ. We are interested in the coefficient of λl, and hence of
terms that contain exactly l multiples of λ, the rest of the n variables in each term are aij, so cl(x)
is a homogeneous polynomial of degree n − i in aij .

Example What are the regular elements of gln? Let g = gln(F), and a ∈ g, a = as + an, where
as is diagonalizable, an is nilpotent, and as and an commute. Then, ad a = ad as + ad an, where
ad as is semisimple, and ad an is nilpotent. The answer to the question will be given in the exercise
below and in the comments following it, and we shall find that a ∈ gln(F) is regular if and only if
all eigenvalues of the matrix a are distinct.

Exercise 7.3.

(a) If as is semisimple with eigenvalues λ1, . . . , λn, then ad as is diagonalizable with eigenvalues
{λi − λj}.

(b) ad a has the same eigenvalues as ad as.

Solution. (a) Choose a basis of F
n in which as is diagonal, and let eij be the matrix with zero entry

everywhere but the (i, j)th position where it has a 1. Then, ad (as)eij = aseij −eijas = (λi−λj)eij ,
thus ad as is diagonalizable with eigenvalues λi − λj , i, j ∈ [n].

(b) Take the Jordan decomposition of a = as+an. Then ad an is nilpotent since an is nilpotent, and
by (a) ad as is semisimple. Hence, we have a decomposition of ad a into a semisimple and nilpotent
part, which commute, thus this decomposition by the uniqueness of the Jordan decomposition
is the Jordan decomposition of ad a. Since the eigenvalues of the semisimple part of a Jordan
decomposition are the same as those of the original matrix, it follows that ad a and ad as have the
same eigenvalues.

By exercise 7.3.(b) we have that

det(ad a − λI) = det(ad as − λI) =
∏n

i,j=1((λi − λj) − λ) =
= (−λ)n

∏
i6=j((λi − λj) − λ),

hence cj(a) ≡ 0 for j = 0, 1, . . . , n− 1, and cn(a) =
∏

i6=j(λi − λj) 6≡ 0 if and only if the eigenvalues
λi are all different. Hence, rank gln(F) = n and a ∈ gln(F) is regular if and only if all eigenvalues
of the matrix a are distinct. The hypersurface of non-regular elements is given by the polynomial
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∏
i6=j(λi − λj) = 0. This polynomial is called the discriminant.

Exercise 7.4. Compute explicitly the discriminant for gl2(F). Then, find the rank of sln(F).

Solution. The discriminant is
∏

i6=j(λi − λj) = −(λ1 − λ2)
2 = −(λ1 + λ2)

2 + 4λ1λ2 = −(trA)2 +

4detA = −(a + d)2 + 4(ad − bc).

We can find the rank of sln in an analogous way as that of gln above. Notice, that the only
difference is that there is one less zero eigenvalue for ad as, that is not hard to see if in the solution
of Ex.7.3.(a) one takes the matrices eij for i 6= j and ejj − e11 for j 6= 1 (which are all in sln)
instead of the matrices eij as we did for gln. Thus, we can write det(ad a−λI) = det(ad as−λI) =
(−λ)n−1

∏
i6=j((λi − λj) − λ),

so rank sln(F) ≥ n − 1. The coefficient of λn−1 is
∏

i6=j(λi − λj), which would be identically
zero only if all matrices in sln(F) had multiple eigenvalues. This is however not the case. Thus,
rank sln(F) = n − 1.
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