
JUNIOR INDEPENDENT WORK, PART 1
SPRING 2003

ALEXEY SPIRIDONOV

This paper represents my own work in accordance with University regulations.

1. Introduction

Dean Hoffman proposed the following block-packing problem at a conference at
Miami University in 1978. [1] The task was to fit 27 a × b × c, a < b < c, blocks
into a cube with side a + b + c. As a simple way of preventing trivial solutions, he
stipulated that 4a > a + b + c; otherwise, one can stack blocks with four of the a
sides in a row, like this:

We will also stipulate that the structure be rigid and stable1; a more concrete
statement:

Requirement 1.1. If one puts the cube made of blocks inside a hollow a + b + c-
cube, there will be no moving parts. (no friction, perfectly made blocks)

Thus, for every block B, there is a line in the x, y, and z directions passing
through b, and some other blocks, such that their total length in that direction is
a+b+c2. Hoffman’s condition specifies that there be at most 3 blocks in such a line.
It also cannot be 2: a ≥ a+b+c

4 ⇒ c ≤ 3a−b < 2a < a+b, so 2a < 2b < 2c < a+b+c
all result in a loose puzzle. Thus, the puzzle can be viewed as a 3×3 grid as shown
in Figure 1.

1Actually, this is probably not necessary; however, it seems tricky to show that no loose

packings exist. Moreover, a loose solution is very difficult to work with physically.
2We should note, for the sake of amusement, that blocks, being physical objects, are open sets

— infinitesimal overlaps of faces, through which such a line might pass, are not tolerated.

1

2 ALEXEY SPIRIDONOV

16 17 18

272625

7 8 9

987

4 5 6

321

15

12

18
21

27

24

6

3

9

C
ol

um
n

(w
id

th
) Row (length)

L
in

e
(h

ei
gh

t)

Figure 1. The definition of rows, columns, and lines in our usage,
as well as the numbering scheme we use on a cubic grid.

Consider the cube as 3 layers of 9 blocks each. (Layers may be taken in any
orientation, but [1 − 9], [10 − 18], [19 − 27] can be examples.) From now on, we
will call these layers squares. Figure 2(i) contains a view of one possible square
from above; notice that the hidden dimension is trivial to deduce, we will therefore
follow this notation. We will also use this numbering schemes for future squares,
even though the blocks may not be explicitly labeled.

Of the 9 ways a + b + c could be written as another sum of those lengths, none
are valid: 3a is too short; 3c – too long; 2a + c is too short (by b− a), 2a + b and
2b + a are similarly so; 2b + c is too long (by b− a), so are 2c + a and 2c + b. The
only one that might possibly fit is 3b. However if some row (wlog) is composed
of 3b = a + b + c, the cube consists of 9 rows, each of which has at least one b-
dimension. Then, they use up 11 b-dimensions. However, each line and column must
also have at least 1 b-dimension, for a total of 9+9+11=29 required to complete the
puzzle. This is impossible, so we must have exactly the sum a + b + c in every row
(column, line). Figure 2(ii)-(iv) shows some invalid packings; the constraint we just
formulated eliminates (ii) (although it is also loose). (iii) illustrates that, while the
orientations and relative positions of the blocks may satisfy the new requirement,
it may be impossible to pack them into the allotted volume. Hence, the complete
constraints on a solution are:

Requirement 1.2. In every row (column, line), there are 3 blocks with distinct
length (width, height), and the blocks are touching each other.

Figure 2(iv) illustrates what happens if the condition c > a + b is violated
– a valid square (the same orientations as in (i)) becomes loose. The condition
4a > a + b + c prevents this problem, of course. However, solutions satisfying Req.
1.2 work independently of a, b, c as long as the weaker condition is satisfied3.

So, we can treat the puzzle simply as a problem of setting the blocks at the
27 grid positions to the correct orientations. Call the set of orientations O =

3Stated without proof for lack of time, but believed to be true; consider a conjecture, if you
wish.

JUNIOR INDEPENDENT WORK, PART 1 SPRING 2003 3

(iii)(ii) (iv)(i)

OK Not OK

a

b

c

a

c

b

c

b

a

a

b

c

321

7 8 9

654

Figure 2. A square from a valid solution of Hoffman’s cube puzzle
(i) and some invalid squares (ii) - (iv). The rows and columns in (i)
are labeled with dashed/dotted arrows, and a numbering scheme
is presented. Circles mark the points of failure in the three invalid
squares.

3
5

4

1

2
0

Figure 3. Numbering scheme for the orientations

{0, 1, 2, 3, 4, 5}; our (arbitrary) mapping of these numbers onto the orientations is
shown in Figure 3.

Definition 1.1. A solution of the Hoffman cube puzzle is a 27-tuple of oi ∈ O
with the following properties:

(1) If oi and oj are in the same row (column, line), their length (width, height)
are different. The formal conditions for being in the same row, column, line
are trivial; e.g. i ≡ j (mod 9)⇔ oi, oj in the same line.

(2) Every square of the puzzle is a valid square: the blocks in each row and
column touch each other, unlike in Figure 2(iii). This is also trivial to
formalize (see explanation in section 2).

(3) Surprisingly, the preceding conditions are not enough; we will discuss the
significance of this shortly. One must also require that when placed into a
cube structure, there are no overlaps of just the corners of blocks (2 takes
care of non-corner overlaps). Some cases will be presented later.

Since the puzzle has a very simple formalization, several people have previously
written computer programs to enumeratively solve it. [2] An interesting feature of
these solutions is that they all omitted (3) of Def. 1.1, and neglected to manually
check all solutions. As a result, they found 26 (up to symmetries), of which only 21
could be constructed. This turned out to be fortunate, since the 26 solutions have
a nicer structure than the 21; we will discuss this in more depth.

The puzzle has an interesting algebraic interpretation. If one constructs a solu-
tion, one sees that there are holes in the cube (which would go away if we allowed
a = b = c, of course). Hence, (a + b + c)3 ≥ 27abc ⇒

(
a+b+c

3

)3 ≥ abc ⇒ a+b+c
3 ≥

3
√

abc, or the arithmetic mean of 3 numbers is no less than their geometric mean.

4 ALEXEY SPIRIDONOV

This argument easily generalizes past the extra constraint on a, b, c — when the
differences in dimensions are great, the holes are bigger (see Figure 2(iv)).

This paper presents yet another solver for the puzzle, written with the intent of
minimizing the search, so that the same techniques could be applied to solve an ex-
tension of the puzzle to the four-dimensional case. We show the 26 pseudo-solutions,
identifying the 21 real ones, and discuss their structure. The four-dimensional case,
was, in fact, the main subject of the investigation. We discuss our formulation and
results on that topic in a section 4.

2. Solving Hoffman’s Cube Puzzle

The first thing to note about the problem is that the pure brute force approach
will not work; a rough estimate of the time it would take to enumerate the 627

cases on a modern personal computer is 2 million years. Of course, such a gross
approach is unnecessary.

The general method in such search problems is to construct solutions step-by-
step, discarding infeasible attempts as soon as they can be identified as such. Thus,
the order, in which the solution is constructed is essential. The second principle is
to avoid performing the same calculation twice. The third, but no less important,
is to avoid unnecessarily complicated search strategies.

The first major constraint is that no row contain elements with the same length.
Finding all possible rows is trivial and instant, even by brute force (64). From now
on, we can work in units of rows, and thus avoid re-calculating this constraint. The
next constraint is when two adjacent rows have corresponding blocks of the same
width, or cannot be placed together without overlap. The former is trivial, while
the later can be formulated in a concise manner. Suppose we are contemplating
the placement of block B. There are two cases when this is prevented, as shown
in Figure 4. Notice that there may be another row above, and column to the left:
e.g., we might be trying to place block 8 below [1− 3], [4− 6], [7] in Figure 2(i). In
that case, l1, l2, w1, w2 signify the distances from the respective edges of the cube.
The two formal conditions for forced overlap are: for (a) — (w1 > w2) ∧ (l1 > l2),
for (b) — (w1 < w2) ∧ (l1 < l2). Notice that if we consider in (a) the block B′,
the variables l1, l2, w1, w2 in both cases will have the same meaning. Additionally,
note that if B (B′ in (a)) is the 3rd block in the row, neither of these conditions
can happen. Thus, the final check for the compatibility of two rows need only be
done for the first two blocks, and has this form: ((w1 > w2) ∧ (l1 > l2)) ∨ ((w1 <
w2) ∧ (l1 < l2)). If a potential solution satisfies this constraint for every pair of
adjacent rows (columns/lines), and also passes the distinct length (width/height)
requirement (further distinct lwh), it is one of the 26 pseudo-solutions.

We now return to the search strategy. Having constructed all rows, we proceed to
construct all squares, since that takes maximal advantage of distinct lwh in a second
dimension. If it were not done in advance, the search would have to perform a subset
of the construction 3 times — once for each square of the puzzle. The calculation of
all squares can be broken down further: once the first row is selected, the remaining
two need only be selected from those, which do not violate the lwh requirement.
Hence, we can precompute those squares. Because the spatial constraint depends
on all the previous rows, doing a similar precomputation is probably not possible
(or very difficult). An analogous precomputation can be done when building a cube
out of squares.

JUNIOR INDEPENDENT WORK, PART 1 SPRING 2003 5

w2w1 w2 w1

l2

l2

l1 l1

(b)(a)

B’

B B

Figure 4. Conditions for row incompatibility.

We implemented a solver using these ideas (see source of solve3D.c, refer to
Appendix A). Since a factor of 48 is inconsequential in this case, it does not take
care to limit its search to non-symmetric variants. For the sake of simplicity, it also
neglects to check square-compatibility in the reverse order (as in, going from [19−27]
to [10− 18] to [1− 9]; this leads it to produce some non-pseudo-solutions; however,
they lack their full set of symmetries. For these reasons, there is a second program
(symm.c), which discards the latter, and also removes all but one of each full sets
of symmetric solutions. It reduces the output of solve3D.c (1332 solutions) to
26. Finally, there is a program (drawsoln.c) which produces the representation of
the cubes in Figure 6, and detects corner overlaps to mark real solutions distinctly
from pseudo-solutions. The three programs take about 80 milliseconds to run on a
Pentium 4 1.7 GHz, and do not use any substantial amount of operating memory
(RAM); that is quite an improvement as compared to 2 million years.

3. The 26 Solutions

Definition 3.1. The dual S′ = (e′1, e
′
2, . . . , e

′
27) of some solution S = (e1, e2, . . . , e27)

has e′i such that the orientations of the a and c dimensions are swapped. In our
numbering scheme, e′i = 5− ei.

The dual is an interesting operation because not only does it preserve distinct
lwh, but also keeps all squares valid (not difficult to argue, even easier to validate
enumeratively, which we have done). So, the dual of a pseudo-solution is again a
pseudo-solution. Hence, we made drawsoln.c group solutions by duality, as can be
seen in Figure 6. Duality, and validity break the solutions down into 4 categories:
1 valid and self-dual, 16 valid ones with distinct valid duals, 4 valid with distinct
invalid duals (and the reverse), 1 invalid and self-dual.

Another notable feature is that the configuration marked in light gray occurs only
in invalid pseudo-solutions. The configuration coerces one of two squares (consider
solution 3 – the configuration coerces block 1, after then 4, then 6, and leaves one
choice in the final row, compare solutions 3 and 10). This is of help in identifying
or remembering the invalid pseudo-solutions. However, square 25 does not contain
this square in any orientation. Another interesting regularity is that every valid
square must contain 3 instances of orientation 0 and 2, 3 of 3 and 5, and 3 of 4
and 1. This is a consequence of a counting argument like the one given in section 1
to show why 3 b-lengths could not be in one row. In the same way, one can easily

6 ALEXEY SPIRIDONOV

Figure 5. An unstable square

argue (once we have limited ourselves to a 3× 3 grid) that unstable squares (as in
Figure 5) cannot be in a solution.

Blocks 2,3,5,6 in the top square, solution 1, form a configuration that is ubiq-
uitous in valid solutions; solutions 2, 5, 11 are not counterexamples – they have it
in another orientation. Awareness of this fact (and the possible positions of this
configuration) should make finding a solution by hand considerably easier. There
are probably many other interesting regularities, but covering them all is beyond
the scope of this paper.

4. Approaching the Four-Dimensional Case

The four-dimensional problem is just a direct extension of Hoffman’s puzzle to
a 4× 4× 4× 4 grid with a× b× c× d blocks, a < b < c < d. For simplicity, rather
than extend his condition, we assume the sizes differ by a very small amount, say
99, 100, 101, 102. The same formalization, and similar numbering schemes can be
used in this case. Here, the brute force approach is considerably more hopeless:
24256 computations would take far longer than the age of the universe to complete.
That does not deter us, however.

The strategy described for building squares translates to the 4-dimensional al-
most directly. For the purposes of constructing them, we may disregard the 3rd
and 4th dimensions, and thus reduce the number of orientations to 12. There are
a total of 4!34 = 1944 rows with this restriction (if we added the other dimensions,
the number would grow by a factor of 24) In the 4D case, we may beneficially
precompute compatible rows twice, rather than just once. All the squares take a
few minutes to compute, resulting in a total of 77436138. Adding the other dimen-
sions increases it by a factor of 216. The cube search strategy outlined in section
2 is at least cubic in the number of squares: we must try 216−377436138 options
for the first square (discard a factor of 8 for a square’s symmetries, something we
cannot do in other layers). The odds that a choice of the 3rd and 4th coordinates
in the first will coerce it in the 2nd are 1

6 , so can expect roughly 213 1
3 77436138

choices for the second layer. In the third layer, only 1
6 of the choices for the third

dimension are non-coerced; in addition, 1
6 of the coerced blocks will fail distinct

lwh. So, 77436138 appears a fair conservative estimate for the number of choices in
the third layer. The fourth layer is very severely constrained both by distinct lwh
considerations, and by spatial requirements; enumerative testing would probably be
replaced by a fast directed search. This argument disregards the portion of choices

JUNIOR INDEPENDENT WORK, PART 1 SPRING 2003 7

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26

Figure 6. Solutions to Hoffman’s cube puzzle. Ones invalidated
by corner overlap are shaded. Solutions are paired by duality: 1
and 2 are dual, 3 and 4, etc. 25 and 26 are self-dual.

8 ALEXEY SPIRIDONOV

that is discarded by spatial constraints; however, these cannot be precomputed, so
the reduction is comparable to a constant factor c (we may throw out all but a
fraction of choices for layer 2, but we still have to test all the layer 3 choices as
computed above). So, the number of computations we have to perform is on the
order of 774361383226c2; As such, it is probably even beyond the reach of current
distributed computing projects. One should beware, however, that these estimates
disregard the possibility of the problem having a non-uniform structure in some
respects; this can affect the search considerably. The same disclaimer applies to
our next attempt.

An improvement is possible that uses the spatial constraints to prune the search
earlier, and organizes the data for effective searching. While generating the allowed
squares, it is a simple and effective matter to categorize them by several of their
rows (adding no more than a few minutes to the task). This allows us to instantly
retrieve squares containing a specified row or rows in specified positions. We must
pick an initial (orientation-insensitive) square, but we can refrain from defining
all the heights of the blocks. Instead, choose just two adjacent sides, producing
27−377436138 options. Now, we can select a square based on one of the two rows
we filled in. We expect there to be 77436138/1944 such squares on average. (each
row has some associated squares, so there is no value in postponing the choice
of the 3rd and 4th coordinates for the second row) The result is in Figure 7(a).
Next, we choose a third square adjacent to the two already chosen. For that, we
need to define the last coordinates for 3 more blocks, increasing the computation
by a factor of 2377436138/19442. We can now define 6 more 3rd coordinates, as
in Figure 7(b). That adds a factor of 2677436138/19442. To add the next face,
we need to fully define 8 more blocks, and search all squares constrained by 3
rows. Most of these squares do not exist, so the search would be considerably
pruned at this stage; on the assumption of uniformity, this stage adds a factor of
2877436138/19443. We might fill in the remaining face in this manner, and use the
now-strong spatial and distinct lwh constraints to complete the cube directly, or
repeat the procedure several more times. We might also at some stage go back to
layer-by-layer completion. Disregarding non-uniformity, and the inevitable pruning
of the search at the later stages, the computational cost of getting to a cube with
the edges defined completely, faces partially defined (2 steps after Figure 7(c)) is
774361386229

194412 ≈ 255. This is, or will shortly be accessible to distributed computing
projects. With further refinements (also computing half-squares – 531726 according
to untested computations, and then computing half-cubes seems promising), it
may be possible to run this on a single PC. We have implemented the search
up to the stage shown in Figure 7. The running time appears to be consistent
with the theoretical estimates. Due to time considerations, further implementation
has not been pursued; our development program is called cubesearch4D.c and is
documented in Appendix A.

Depending on the number of cubes found, all the solutions may or may not
be feasible to enumerate. However, given a cube, the task of completing it to a
hypercube is very constrained – there are no undefined dimensions, so the approach
suggested above for building cubes from squares should be even more powerful. So,
as long as the cubes are few enough to store and access effectively, we expect that
completing a cube to a hypercube will be fast. This is true, since we can presently
only store about 3 orders of magnitude more than the number of squares – 1000

JUNIOR INDEPENDENT WORK, PART 1 SPRING 2003 9

(a) (b) (c)

Figure 7. Construction of cubes for the four-dimensional puzzle.
Fully defined blocks are marked with dark gray, partially defined
ones are white or transparent. Light gray are the next to become
fully defined.

cubes per square, on average. Hence, the search would be no bigger than 1012 (if
we just test all the cubes starting with each of the 4 squares in the given cube).
1012 simple calculations would take between a fraction of an hour and a day on
a modern PC. We have some reason to believe that the number of cubes is not
excessive, based on the growth patterns observed in a similar, but easier problem
(results not shown).

5. Conclusion

We repeated the work to solve Hoffman’s cube puzzle, producing a very fast
program for doing so. We have also made some observations about the solution set
that, as far as we know, are new. We developed some strategies and running-time
estimates for the four-dimensional variant of Hoffman’s puzzle. Although we have
been unable to solve it, our calculations suggest that even a complete enumeration
of the answers is not hopeless.

Appendix A. Source code

The archive with all the code developed in this project is available at
http://www-math.mit.edu/~lesha/papers/hoffman-puzzle.tgz. It was devel-
oped on an x86 GNU/Linux system, but should work with few or no adjustments
on most modern systems.

It contains the source files mentioned in the text, implementing the approaches
discussed. It also includes a Makefile, which is provided to simplify the compilation
of this code. If you have the “make” utility, typing make in the directory created
upon extracting the archive will compile all programs. The resulting executables
will be as in Table 1.

The programs in the first part of the table pertain to the original puzzle. To gen-
erate the figure with solutions used in this paper, run n3 | sym | ds > solutions.ps.
(this will not have the light gray highlights used to show the telltale invalid config-
uration)

10 ALEXEY SPIRIDONOV

Executable Source file Description
program

s3 solve3D.c Basic Hoffman puzzle solver
sym symm.c Filters out symmetric copies,

discards partial symmetry sets
ds drawsoln.c Produces a PostScript drawing of

the solutions, grouping by duality,
highlighting invalid ones.

gr genrows4D.c Generates the 1944 4D rows
gs gensquares4D.c Generates the 4D squares

cnvsrt cnvsrt.c Sorts the stored 4D squares
cs cubesearch4D.c Performs a part of the 4D

cube search using the data produced
by the previous programs.

Table 1. Executables produced from the various source files by
the provided Makefile.

The programs in the second part of the table are not really fit for public con-
sumption; one must adjust the paths in all the programs (including convall) to
fit your system. You will need about 600-700 megabytes of free disk space to run
them. The procedure then is as follows. One runs gr, then gs, then convall, which
executes cnvsrt for all the files storing squares. Only now are you ready to run
cs. It picks a random square, and counts the number of configurations as in Figure
7(b). It is also rather inefficient. If anyone were to continue this work, we would
suggest implementing a lot of the code from scratch, while occasionally referring to
the supplied code.

References

[1] J. Rausch, Hoffman’s Packing Puzzle, Puzzle World, Online. Available May 2003 at

http://www.johnrausch.com/PuzzleWorld/puz/hoffmans_packing_puzzle.htm

[2] R. K. Guy and J. H. Conway, Winning Ways for Your Mathematical Plays, Academic Press,

1982

