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1. Introduction

This paper concerns two types of simple graphs:

(1) Graphs possessing the maximum possible girth with a given diameter. We
derive a complete characterization of these.

(2) Graphs, which are both their own duals and their own complements. We
present a complete listing for ones drawn in the plane and in the torus.

2. Maximal-girth Graphs

2.1. Definitions.

Notation. (u, v)G is the shortest path between u and v with u, v ∈ V (G) and
(u, v)G ⊆ E(G). ‖(u, v)G‖ denotes the length of this path. We will omit the
subscript when the context is obvious.

Most of the time, we use paths as sets of edges. However, we will occasionally
refer to the path’s vertex set; by that, we mean the set of vertices that are endpoints
of members of the path. The ends (or endpoints) of a path are the two vertices
that have degree 1 in its edge set.

Definition 2.1. The girth of G, g(G), is the number of edges in the shortest cycle
of G. Girth is not defined for forests; therefore, this section excludes them from
consideration.

Definition 2.2. The diameter of G, d(G) is the maximum of ‖(u, v)G‖ over all
u, v ∈ V (G).

Definition 2.3. A d, k – Moore graph is a k-regular graph of diameter d with
1 + k

∑d−1
i=0 (k − 1)i vertices.

Definition 2.4. G is a maximal-girth graph if no graph with the same diameter
has a larger girth.

2.2. Preliminaries. In this subsection, we present some simple results that will
be very useful later. We begin with this trivial lemma:

Lemma 2.1. For any G, g(G) ≤ 2d(G) + 1.
1
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Proof. Suppose there exists G such that g(G) ≥ 2d(G) + 2. Let C ⊆ G be a cycle
with |V (C)| minimum. Let a, b ∈ V (C) be two vertices separating C into two
paths of length at least d(G) + 1. If ‖(a, b)G‖ ≤ d(G), C would not be the shortest
cycle of G. Hence, ‖(a, b)G‖ ≥ d(G) + 1, which contradicts the definition of the
diameter. �

We thus obtain a more precise characterization of maximal-girth graphs:

Corollary 2.2. G is maximal-girth iff g(G) = 2d(G) + 1.

Proof. ⇐ : Suppose g(G) = 2d(G) + 1. By Lemma 2.1, no graph with diameter
d(G) and larger girth can exist. Thus, G is maximal-girth.
⇒ : Suppose G is maximal-girth, but g(G) 6= 2d(G)+1. Then, from Lemma 2.1,

g(G) < 2d(G) + 1. Let G′ be the cycle of length 2d(G) + 1. g(G′) > g(G), but
d(G′) = d(G), so G is not maximal-girth. That is a contradiction. �

Another valuable property of maximal-girth graphs is that:

Lemma 2.3. All maximal-girth graphs are 2-vertex-connected.

Proof. Suppose G has a cut-vertex v. Then, G\v has more than one component.
Assume that some component G′ has the property that v ∈ C ⊆ (G′ ∪ {v}), where
C is the shortest cycle through v. By definition, C has size ≥ g(G). Let u be a point
in C that is at the distance (in C) l =

⌊ g(G)
2

⌋
from v. Since C is the shortest cycle

through v, u is also l edges away from v in G. Now consider w in a component other
than G′. Since v is a cut-vertex, (u, v) ⊂ (u,w)G, and d(G) ≥ ‖(u,w)G‖ >

⌊ g(G)
2

⌋
.

Therefore, g(G) < 2d(G) + 1 and G is not maximal-girth.
If no component has a cycle containing v, we may contract all the edges leading

out of v to obtain G′. The new graph clearly has the same cycles as G, and v is
still a cut-vertex. Therefore, g(G′) = g(G) and d(G′) ≤ d(G). We can repeat this
procedure indefinitely until v does belong to a cycle in some component, at which
point we get the previous case: g(G) = g(G′) < 2d(G′) + 1 ≤ 2d(G) + 1. �

2.3. Main Result. The following observation motivates our further investigation:

Proposition 2.4. All Moore graphs are maximal-girth.

Proof. Let G be a d, k – Moore graph, and u ∈ V (G). Label Sl the set of points v
such that ‖(u, v)‖ = l. Obviously, |S0| is 1, and |S1| is k.

In general, for 0 < i ≤ d, every vertex v ∈ Si has k edges going to Si−1, Si, or
Si+1. If v had an edge to Sj with j < i−1, ‖(u, v)‖ would be < i — a contradiction
since v ∈ Si. If v had an edge to w ∈ Sj , with j > i + 1, w would actually be in
Si+1 — again, a contradiction.

Obviously, for each v ∈ Si at least one of these k edges must go to a v′ ∈ Si−1.
If i < d, the others can (obviously) and must go to distinct vertices in Si+1. In
other words,

(1) |Si+1| = (k − 1) |Si|
Suppose some edge other than (v, v′) goes to Si−1 (0 < i ≤ d). Then, the |Si| ≤
(k−1) |Si−1|−1, and hence |V (G)| ≤ 1+k

∑i−2
j=0(k−1)j+(k(k−1)i−1−1)

∑d−i
j=0(k−

1)j < 1 + k
∑d−1
i=0 (k− 1)i, so G is not a Moore graph — a contradiction. Similarly,

if we suppose that some edge goes from v to Si (0 < i < d), |Si+2| ≤ (k−1) |Si|−2
and G once again cannot be a Moore graph.
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Moreover, if some v1, v2 ∈ Si, 0 < i < d, have a common neighbor w in Si+1,
then w has two different neighbors in S(i+1)−1, which was shown to be impossible
above. Therefore, the neighbors of every v1 ∈ Si in Si+1 are distinct from those of
every other v2 ∈ Si. That proves (1).

Therefore, every cycle through u is of length at least 2d+1 (otherwise, (1) would
have to be violated). Since u was chosen arbitrarily, g(G) = 2d+ 1. �

This proposition makes it natural to ask whether there are any non-Moore
maximal-girth graphs. Arriving at the answer becomes a relatively simple mat-
ter once we describe Moore graphs as follows:

Lemma 2.5. A regular maximal-girth graph is a Moore graph.

Proof. Suppose G is a k-regular maximal-girth graph. Using the notation from the
proof of Proposition 2.4, we want to show that ∀0 < i < d(G), |Si+1| = (k− 1) |Si|.
As in Proposition 2.4, given v ∈ Si with 0 < i ≤ d(G), the k edges leaving it go to
Si−1, Si, or Si+1, and at least one, (v, v′), goes to Si−1.

Suppose some (v, w), v′ 6= w ∈ Si−1 is an edge. Let C ′ = (u, v′)∪(u,w)∪(w, v)∪
(v′, v). It is the union of two paths, each at most d(G) in length. The paths have
the same endpoints, but do not share all vertices. Therefore, C ′ contains the edge
set of a cycle. The cycle must be at most 2d(G) in length — a contradiction, since
G is maximal-girth.

Suppose i < d(G) and some (v, w), w ∈ Si is an edge. As before, let C ′ =
(u, v) ∪ (u,w) ∪ (v, w). C ′ then contains the edge set of a cycle, and is of size
< 2d(G) + 1 — again, a contradiction.

Now we know that k− 1 neighbors of every v1 ∈ Si are in Si+1; these neighbors
are also distinct from those of every other v2 ∈ Si. If that was not the case, the
shared neighbor w ∈ Si+1 would have two different neighbors in S(i+1)−1, previously
shown to be impossible.

Therefore, |Si+1| = (k − 1) |Si| and |V (G)| =
∑d(G)
i=0 |Si| = 1 + k

∑d−1
i=0 (k − 1)i.

Hence, G is a Moore graph. �

Now we can rephrase our question as whether there are any non-regular maximal-
girth graphs.

Proposition 2.6. All maximal-girth graphs are regular.

Proof. Let G be maximal-girth with d(G) = n, and C — some cycle of size
g(G) = 2n + 1 with vertices v0, v1, . . . , v2n (subscripts in Z/(2n + 1); such a cycle
exists by definition of g(G)). Suppose some v = vi has deg v = d + 2 neighbors:
vi+1, vi−1, v

(1)
i , ..., v

(d)
i . No v(j)

i is in V (C): if it were otherwise, there would exist a
cycle shorter than g(G) (contradicting the definition of girth).

Consider u = vi−n and some v′ = v
(j)
i . Define C ′ with V (C ′) = V (C) ∪ {v′}

and E(C ′) = E(C) ∪ {(v, v′)}. There are three paths of interest: pC = (u, v′)C′ ,
pC̄ = (E(C)− (u, v)) ∪ (v, v′), and pG = (u, v′)G.
‖pC‖ = n+1, while ‖pG‖ ≤ n. Thus, these two paths are not identical. Moreover,

it cannot be that V (pG) ⊂ V (pC); if that were the case, by substituting pC in C
with pG we would obtain a shorter cycle — a contradiction. Hence, we have two
paths with common ends that do not share all vertices. Therefore, their union
contains a cycle of size at most the sum of their lengths, in our case ≤ (n+ 1) + n.
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Equality must hold, since smaller cycles are impossible. Thus,

(2) V (pC) ∩ V (pG) = {u, v′} and ‖pG‖ = n

Also we get, ‖pC̄‖ = n + 2; reasoning as above, the union of these two paths
must contain a cycle of length ≤ 2n + 2. Again, equality must hold, since the
next smallest possible value is 2n — if any vertices, but the endpoints, are shared
between the two paths, the cycle cannot exceed that size. Therefore, once more,
V (pC̄) ∩ V (pG) = {u, v′}.

We thus see that pG overlaps with V (C) in only one vertex — u. Thus, u must
have a neighbor aside from vi−n−1 and vi−n+1 corresponding to v′ = v

(j)
i . Call this

neighbor u(j).
Now we must show that for any v′′ = v

(k)
i , such that k 6= j, V ((u, v′′)) ∩

V ((u, v′)) = {u}. Let p′ = (u, v′) ∪ (v′, v) and p′′ = (u, v′′) ∪ (v′′, v); then, by
(2), ‖p′‖ = ‖p′′‖ = n + 1. As before, the paths share endpoints, but are par-
tially disjoint (since v′ 6= v′′), so V (p′) ∪ V (p′′) contains a cycle of length at most
2n + 2. Again, if (V (p′) ∩ V (p′′))4 {u, v} 6= ∅, the cycle is at most 2n in size, an
impossibility. Thus, u(j) 6= u(k) whenever j 6= k, and so deg u ≥ d+ 2.

Therefore, for any 0 ≤ i ≤ 2n ∈ Z/(2n + 1), deg vi−n ≥ deg vi. Thus, vi+1 =
vi−2d ≥ vi and hence all degrees in the cycle are the same.

Notice that (2) also implies that v(j)
k is in a cycle of size g(G) containing v.

Therefore, every neighbor of a vertex of C also has degree d+2. Analogously, every
neighbor of those neighbors is of the same degree. Continuing in this manner,
every vertex connected to v is of degree d + 2. Since the graph is connected (by
Lemma 2.3), it is regular. �

Putting Proposition 2.4, Lemma 2.5, Proposition 2.6 together, we trivially get
our final result:

Corollary 2.7. The maximal-girth graphs are exactly the Moore graphs.

3. Self-dual, Self-complementary Graphs

3.1. Possible Embeddings. Evidently, in any embedding, a self-dual graph has
as many faces as it does vertices. Since we are interested only in simple graphs,
a self-dual graph must have all vertices of degree at least 3 — a degree 1 vertex
becomes a loop in the dual, while a degree two vertex leads to a double edge. On the
other hand, any self-complementary graph has exactly half the possible number of
edges. Finally, a graph drawn on a surface of genus g has the following relationship
between the number of vertices – v, faces – f , and edges – e: v−e+f = χ(g), where
χ(G) = 2 − 2g is a function of the genus. (This is the generalized Euler formula,
also known as the Poincaré formula, see [1]). These three relationships constrain
the possible graphs, and their possible embeddings a great deal — there is no need
to consider a graph or a surface with properties that do not yield positive integer
(integer for χ(g) — Is this true?) solutions to the following system of equations:

v − e+ f = χ(g)
v = f

e =
v(v − 1)

4

(3)
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B

degree 4

A

degree 3

8 edges

Figure 1. The form of 8-vertex self-dual, self-complementary pla-
nar graphs. |A| = |B| = 4; A = B̄.

Simplifying, we get v2 − 9v + 4χ(g) = 0; solving for v,

(4) v =
9±

√
81− 16χ(g)

2
Evidently, the discriminant D is always odd, so whenever it is a perfect square,

v is an integer. D takes on the same positive values as 16b+1 with b ≥ 0; therefore,
we are interested in (a, b) such that a2 = 16b + 1. This is easily shown to happen
for values of a ∈ {ai}, where a1 = 1, a2n = a2n−1 + 6, a2n+1 = a2n + 2. The
corresponding values of χ(g) = 81−a2

i

16 ; the first few are 5, 2, 0, −9, −13, −28, . . .
For χ(g) = 5 and 2 both values of v are positive: 4, 5 and 1, 8. For the rest, only
ai+9

2 is positive. The first few values of that sequence are 5, 8, 9, 12, 13, 16, . . .
These values are all obviously ≡ 1 (mod 4)) or ≡ 0 (mod 4), so v(v−1)

4 is always
an integer. The corresponding values of the genus are − 5

2 , 0, 1, 11
2 , 13

2 , 15, . . .
The first one is obviously nonsensical, while for the last 3 listed values the surfaces
are complex, and the graphs have to be rather large, making working with them
more difficult. Values would beyond clearly yield even more unmanageable cases.
Therefore, we only present complete listings of the self-dual, self-complementary
graphs on the surfaces of genus 0 and 1 — the plane and the torus.

3.2. Planar Embedding. In this case
√
D = 7 and we have two choices for v =

1, 8. The graph on one vertex is obvious. As for the graph on 8 vertices, only
degrees 3 and 4 are allowed — vertices of degree ≥ 5 would force vertices of degree
< 3 in the complement. Moreover, there are exactly 4 of both kinds of vertices,
because taking the complement replaces the degree 4 vertices by those of degree 3
and vice versa. Self-complementarity also requires the subgraphs of degree 3 and 4
to be complements, and exactly half of the possible edges ( 4·4

2 = 8 of them) between
these subgraphs to be present. Figure 1 summarizes our findings so far.∑

v∈A deg v = 12, and 8 of these must go to B, so there are exactly two internal
edges in A. Similarly, there are 4 internal edges in B. That leaves only two possible
configurations of A and B, shown in Figure 2.

Consider configuration 1 — vertex A2 has 3 edges going to B, which means it
misses one vertex: B1, B2 or B3 (B4 is perfectly symmetrical to B3). The two ways
of drawing B in the plane (placing B1 inside or outside the triangle) are equivalent,
so we will use the one from the figure. Then, we have 4 cases: if A2 misses B1,
we may place it either inside, or outside the triangle — two cases, if B2 or B3

is missed, A2 must necessarily go outside the triangle, giving another two cases.
Further analysis of the cases is presented below. The results are in Figure 3.
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Figure 2. Allowed internal configurations of A and B.
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Case 4

(b)

Case 2Case 1 Case 3

Figure 3. Cases occurring in the analysis of configuration 1.
Structures that cannot be made planar are crossed out in gray.

(1) If A2 is inside the triangle, B1 has 3 available edges, which must go to A1,
A3, and A4. That leaves one available edge on each of A3, A4, B3, B4. The
two ways of connecting them produce the same drawing of the same graph,
shown in Figure 3. The graph has 5 faces of size 3, so it is not self-dual.
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4321

Figure 4. Cases occurring in the analysis of configuration 2.

(2) If A2 is outside of the triangle (and misses B1), three vertices of B are left
with unconnected edges — B1, B3, and B4. Since the remaining vertices
of A are all connected, the three vertices of B must be in a the same face
for us to make a planar drawing. However, by inspection, this is impossible
(no matter how we draw the connections from A2). The figure shows one
way to place the connections (the others are equivalent, with the outside
face swapped with some other one).

(3) If A2 misses B2, all four vertices of B retain available edges after A2 is
attached; however, it is clear by inspection that they will not be in the
same face regardless of the placement of A2. That shows no such graphs
are possible by an argument analogous to that of case 2.

(4) If A2 misses B3, the three vertices of B with available edges lie in the same
face. Therefore, we may attach the three remaining vertices of A. If both
B4 and B1 (with two free edges) miss A1, it becomes inaccessible from B3

(case (a)). Thus, the only available configurations are with either B1 or B4

hitting A1. That gives cases (b) and (c), respectively (only one drawing
possible in each case). Case (b) has a face of size 5, and so is not self-dual.
Case (c) is not self-dual because every face of size 3 has another face of size
3 adjacent (configuration 1 graphs don’t have this property).

We thus see that no configuration 1 graph can be self-dual and self-complementary.
In configuration 2 graphs, the inside and the outside of B are perfectly symmet-

rical, as are the two components of A. Therefore, there are only a few cases. By
symmetry, we may assume that one component of A called A′ is inside B (A′′ is
the other one). It contacts either two, three, or four of B’s vertices. There are two
ways it can contact 2 vertices, and one way it can contact 3 or 4 vertices, as shown
in Figure 4. Case 4 can be ruled out immediately — it has three size 3 faces all
adjacent, and none of these can be split up by the introduction of A′′. As for the
others, more detailed analyses follow.

(1) A′′ cannot be placed inside the square without violating planarity, and must
thus go outside. Moreover, there is only one obvious way of connecting it
up. The resulting graph is self-complementary and self-dual and is shown
in Figure 5.

(2) Again, there is just one way of connecting up A′′. However, it may now be
placed inside or outside B. Positioning it inside is excluded as it creates
a face of size 6. The remaining choice is to place it ouside; the resulting
graph also satisfies the desired conditions, and is in the figure.

(3) Clearly, A′′ cannot be placed inside B; however, there are two distinct ways
of connecting it. One yields a self-complementary, self-dual graph, while
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Case 3

Case 1 Case 2

(b)(a)

Figure 5. The 8-vertex self-dual, self-complementary graphs (1,
2, 3a) and a failing candidate, crossed out in gray (3b).

the other does not. Both are in Figure 5; the unsuitable one is crossed out
in gray (b). It is not self-dual, since its size 3 faces are all disconnected.

Thus, there are four self-dual, self-complementary graphs in the plane — the
single vertex, and the three 8-vertex graphs listed in Figure 5.

3.3. Toroidal Embedding. In this case, self-dual, self-complementary graphs
must all have 9 vertices. That also implies, by the same logic as in the previ-
ous subsection, that these vertices are all of degree 3, 4, and 5. The numbers of
degree 3 and degree 5 vertices are equal, and the restrictions to those vertices are
complementary subgraphs, with exactly half the intervening edges present. That
excludes graphs with an odd number of degree 3 vertices, leaving three cases: 9 de-
gree 4 vertices; 5 degree 4, 2 degree 3, 2 degree 5; 1 degree 4, 4 degree 3, 4 degree 5.
From here, it is possible to continue the same kind of configuration-based analysis
as before. However, that is tedious and more difficult, since there are many more
cases. Additionally, toroidal embeddings are much less restrictive, and often not
unique for a given graph.
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The following observations enable relatively simple and efficient computer-based
analysis of the problem. The complement operation obviously defines a permutation
p : V (G) → V (G) on a self-complementary graph. If (u, v) ∈ E(G), (p(u), p(v)) /∈
E(G); similarly, if (u, v) /∈ E(G), (p(u), p(v)) ∈ E(G). We will call the graphs that
have this property complement-invariant under p.

Suppose our permutation has a cycle (a1 a2 a3 . . . an) such that n is odd. Let
e((ai, aj)) be 1 if (ai, aj) is an edge, and 0 otherwise. Then, if v = e((a1, a2))
and w = (v + 1) mod 2, e((a2, a3)) = w, e((a3, a4)) = v, and so forth, with
e((a2i, a2i+1)) = w and e((a2i−1, a2i)) = v for 1 < 2i < n. Then, e((an−1, an)) = w,
e((an, a1)) = v, and e((a1, a2)) = w, a contradiction. Therefore, the complement
permutation has no odd cycles. Similarly, it cannot have a two-cycle (a1 a2) — then
e((a1, a2)) = v 6= w = e((a2, a1)). It also clearly cannot have more than one fixed
point. Therefore, there are only two possibilities for a permutation on 9 vertices —
one with two 4-cycles and a fixed point, and one with an 8-cycle and a fixed point.
We may label the vertices so that the permutation is either p1 = (1 2 3 4)(5 6 7 8)(9)
or p2 = (1 2 3 4 5 6 7 8)(9).

Complement-invariance under p1 or p2 constrains the possible graphs greatly.
For instance, if we choose (1, 2) to be an edge under p1, (2, 3) and (4, 1) are forced
to be non-edges, and (3, 4) is forced to be an edge. For p1, there is a total of 10
such choices to make, instead of 18 for a complete search of 18-edge graphs. 210 =
1024 graphs is a much more manageable quantity than

(
36
18

)
= 326704870800. The

constraints on the allowed degrees reduce both numbers substantially. Nonetheless,
even after eliminating the graphs with obviously unsuitable degrees from the

(
36
18

)
cases, the brute force approach is problematic for a computer, because checking for
graph isomorphism is an expensive operation, and far too many such checks are
still necessary.

For p2 there are just five choices, giving 32 more possible graphs, all of which
turn out to be included in the 1024 generated by p1. However, it is much faster
to prove by calculation than by argument, so we make no further comment on the
issue.

Of these 1056 graphs, most are isomorphic; so many, in fact, that it is perfectly
practical to make a pass through the graphs taking out one isomorphism class after
another. The whole process only takes several tens of thousands of isomorphism
checks, yielding 36 distinct graphs. Each of these is self-complementary by con-
struction, so it remains to check if any are self-dual. Of them, 22 have the proper
degree structure. That is still too many to comfortably treat manually.

To check for self-duality, we enumerate all possible rotation systems on each
graph, generate the dual dictated by the rotation system (walking around each
face by turning right at every vertex, as described in section 1.2 of [2]). This
method is inefficient, but is simple and fast enough for the small number of small
graphs that we have. Depending on the number of degrees, the numbers of rotation
systems are as follows: with 4 degree 5 vertices we have 4!53!2!5 = 31850496, with
2 degree 5 vertices, 4!23!52!2 = 17915904, and, finally, for 9 degree 4 vertices, we
have 3!9 = 10077696 rotation systems.

We immediately discard every dual with a face larger than the maximum (smaller
than the minimum) degree of the tested graph. In most cases, that leaves only a few
hundred duals out of the several tens of millions. These duals are then compared
for isomorphism with the original. The results — four self-dual, self-complementary



10 ALEXEY SPIRIDONOV

Figure 6. The self-complementary, self-dual graphs on the torus.

graphs on the torus are presented in Figure 6, drawn in a manner similar to the
one used in [2].
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