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Abstract.
A grid shape is a set of boxes chosen from a square grid; any Young dia-

gram is an example. This paper considers a notion of pattern-avoidance for
0-1 fillings of grid shapes, which generalizes permutation pattern-avoidance.

A filling avoids some patterns if none of its sub-shapes equal any of the pat-

terns. We focus on patterns that are pairs of 2× 2 fillings. For some shapes,
fillings that avoid specific 2× 2 pairs are in bijection with totally nonnegative

Grassmann cells, or with acyclic orientations of bipartite graphs. We prove a

number of results analogous to Wilf-equivalence for these objects — that is,
we show that for certain classes of shapes, some pattern-avoiding fillings are

equinumerous with others.

Rsum Une forme de grille est un ensemble de cases choisies dans une grille
carre; un diagramme de Young en est un exemple. Cet article considre une

notion de motif exclu pour un remplissage d’une forme de grille par des 0 et des

1, qui gnralise la notion correspondante pour les permutations. Un remplissage
vite certains motifs si aucune de ses sous-formes n’est gale un motif. Nous

nous concentrons sur les motifs qui sont des paires de remplissages de taille
2× 2. Pour certaines formes, les remplissages vitant certaines paires de taille

2 × 2 sont en bijection avec les cellules de Grassmann totalement positives,

ou bien avec les orientations acycliques de graphes bipartis. Nous dmontrons
plusieurs rsultats analogues l’quivalence de Wilf pour ces objets — c’est--dire,

nous montrons que, pour certaines classes de formes, des remplissages vitant

un motif donn sont en nombre gal d’autres remplissages.
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will have much better descriptions. The

motivation and structure of the paper will be improved.

1. Introduction

1.1. Pattern-avoidance of fillings, in a nutshell. Perhaps the best-known ex-
ample of pattern avoidance is defined for permutations. Let Sn be the set of per-
mutations of [n] = {1, 2, . . . , n}. A permutation σ ∈ Sn avoids τ ∈ Sk if there is no
set of indices 1 ≤ i1 ≤ · · · < ik ≤ n such that

π(iτ−1(1)) < π(iτ−1(2)) < · · · < π(iτ−1(n)).

Key words and phrases. pattern-avoidance, filling, grid shape, Le-diagram, acyclic orientation,
Young diagram.
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In other words, if we take the jth largest value of {π(il)} and replace it by j in
π(i1), π(i2), . . . , π(ik) for all 1 ≤ j ≤ k, we will not get τ ’s word τ(1), τ(2), . . . , τ(k)
for any index set {il}.

Let Sn(σ) be the set of permutations of [n] that avoid σ. Permutations σ and
τ are Wilf-equivalent if |Sn(σ)| = |Sn(τ)| for all n. For more details on Wilf
equivalence, and further references, see [8].

The permutation matrix of σ is a matrix Pσ = (pij) with pij = 1 if σ(i) = j,
and pij = 0 otherwise. In terms of these matrices, the permutation σ ∈ Sn avoids
τ ∈ Sk if no k × k minor of Pσ equals Pτ . If we draw the permutation matrices
with lines separating rows and columns, then permutations are just special cases of
0− 1 fillings of square shapes.

Thus, pattern-avoidance generalizes naturally to fillings of shapes, as follows: a
filling F avoids a filling G if no minor of F equals G (both the shapes and fillings
must agree). Wilf-equivalence also translates to this context — two patterns p1 and
p2 are equivalent if p1-avoiding fillings are equinumerous with p2-avoiding fillings.

1.2. Other notions of pattern-avoidance in fillings. We will use the above
definition of pattern-avoiding fillings. However, this is a recent subject with a lot
of variation in the objects of study and definitions. Here, we give an overview of
some of these variations.

In [5], Marcus and Tardos generalize permutation-avoidance in a different way.
In that paper, a filling contains a pattern not only if the some minor equals the
pattern, but also if the minor has a 1 wherever the pattern has a 1. This definition
leads to nice extremal results in permutation-pattern avoidance, but does not seem
related to ours.

In [4], Christian Krattenthaler discusses the same object — binary fillings of grid
shapes, — but with a rather different definition of “pattern.” The main objects in
his paper are various chains in fillings. For example, an NE-chain is a sequence
of 1s in the filling, so that each 1 is above and to the right of the previous one.
The chain’s length is just the number of 1s in it. Many variations on the notion
of chain appear in the paper, and the results describe fillings of Ferrers shapes
(Young diagrams, reflected) with restricted chain lengths. These include bijections
with other objects, and some statistics. In particular, results on non-crossing set
partitions and matchings follow from the results on fillings.

Although the problems in Krattenthaler’s paper are quite different from ours,
there are some interesting commonalities. Our paper, like his, uses 0 − 1 fillings
to extend previous results. Another benefit is a more uniform approach to a class
of problems: both papers can potentially bring out combinatorial connections that
would otherwise be obscured. Finally, Krattenthaler shows interest in more general
classes of shapes, something that is at the heart of the present paper.

In [6], Anna de Mier uses a definition of avoidance close to that of Marcus and
Tardos [5], but obtains results on noncrossing and nonnesting graphs, related to
those in Krattenthaler’s paper.

1.3. Related results. In [8], Zvezdelina Stankova does not explicitly mention
pattern-avoiding fillings. However, the main relation of that paper is shape-Wilf-
ordering �s, which can be rephrased in terms of fillings. Let τ and σ be permuta-
tions; then σ �s τ iff for every Young diagram λ, the number of 0− 1 fillings with
exactly one 1 in each row and column, which avoid Pσ, is at most the number of



PATTERN-AVOIDANCE IN BINARY FILLINGS OF GRID SHAPES 3

such fillings avoiding Pτ . The key point here is that, just as in our definition, every
cell of the square pattern Pσ must be inside the Young diagram to match.

In [1], Vt Jelnek studies a problem related to Stankova’s. He works with 0 − 1
fillings of rectangular shapes. However, instead of constraining all row and column
sums to be 1 (that would make a permutation, of course), he allows an arbitrary
fixed sum for each row and column. In our terms, his main result is about equivalent
patterns (recall — that means “fillings avoiding them are equinumerous”). He shows
that permutations of a fixed order ≤ 3 are all equivalent, when restricted to fillings
with a fixed multiset of row and column sums.

The results most closely related to ours are due to Kitaev, Mansour, and Vella
[3], and Kitaev [2]. In both papers, the shapes are rectangles, and the fillings are
binary. They consider all nontrivial patterns up to size 2 × 2 — that is, all 0 − 1
fillings of these shapes:

(1)
.

The first paper counts, for each of the 56 described patterns, the number of fillings
of an m × n rectangle, which avoid it. It defines two notions we also use: pattern
complement (see Fact 2.12), and pattern symmetry (Subsection 3.1).

The second paper finds equivalences between patterns consisting of multiple 3-
cell fillings, as in (1). They forbid 2, 3, and 4 patterns simultaneously, and give
equivalence classes of tuples of 3-cell fillings in each case. The main approach, like
in [2], is to explicitly count the pattern-avoiding fillings of rectangles.

1.4. Our results. Permutations are special fillings of special shapes; all generaliza-
tions in the above papers are restricted to special shapes, and often special fillings
too. In contrast, in this paper we study arbitrary fillings of arbitrary shapes. How-
ever, our patterns are quite special — we require that a filling avoid a pair of
2 × 2-fillings. We made this choice because of some results due to Alex Postnikov
[7]. He proved the following facts, which we restate in terms of 2× 2 pattern pairs:

(1) Fillings of Young diagrams λ that avoid the pattern pair
(◦ •
• ◦

∣∣• •
• ◦

)
(where

◦ = 0 and • = 1) are exactly the -diagrams. The latter are in bijection with
totally nonnegative Grassmann cells, which are defined in [7] as elements of
a particular cellular decomposition of Grtnnk,n . This Grtnnk,n denotes, in turn,
elements of the Grassmannian with nonnegative Plcker coordinates.

(2) Fillings of Young diagrams λ that avoid
(◦ •
• ◦

∣∣• ◦
◦ •

)
are acyclic orientations of

the diagram’s bipartite graph Gλ (rows and columns are vertices, boxes are
edges). According to [7], the following objects associated with λ are equinu-
merous: acyclic orientations of Gλ, -diagrams on λ, totally nonnegative
Grassmann cells inside the Schubert cell Ωλ, and several others.

Thus,
(◦ •
• ◦

∣∣• •
• ◦

)
- and

(◦ •
• ◦

∣∣• ◦
◦ •

)
-avoiding fillings are equivalent in Young diagrams.

This paper makes some steps towards a classification of equivalences of 2 × 2
pattern pairs for general shapes and fillings. The essential notations and definitions
are in Section 2, a general discussion of the problem is in Section 3. In Section 4,
we extend Postnikov’s proof of the above equivalence to far more general shapes,
and then apply these ideas to other pattern pairs in Sections 5 and 6. Section 7
contains a bijection that strengthens two of the equivalences.

In total, we describe the relations between 13 pattern pairs. Of the resulting
156 equivalences, 10 are believed to be described fully — when a shape does not
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fit the assumptions of the theorem, the equivalence is expected to fail. This claim
is based on empirical evidence; making it rigorous is expected to be difficult. We
conjecture 4 more equivalences between 8 patterns; empirically, these hold for a
broad class of shapes. Computations also suggest that the equivalences in this
paper, proved and conjectured, are the “major” ones. We have not found any others
that occur for large, fairly irregular classes of shapes. A proof of the conjecture,
and several refinements of the equivalences in this paper would therefore complete
the classification of the major equivalences.

In Section 8 especially, and also throughout the paper, we suggest a number of
other interesting problems in this framework. Certainly, many more questions are
waiting to be asked.

2. Basic Definitions

2.1. Shapes and Fillings.

Definition 2.1. An m×n-grid shape S is a subset of boxes selected from a m×n
2-dimensional square grid. Here is a 5× 6 grid shape S:

Some nice special cases are: rectangles, Young diagrams, and skew-shapes:

.

From now on, we will call these simply shapes.

Definition 2.2. The graph GS of an m×n-shape S is a bipartite graph on m+n
vertices. The first part of GS , with m vertices, corresponds to the rows of S. The
second part, with n vertices, corresponds to the columns. There is an edge in GS
between row i and column j iff S has a box in that position.

S GS

r1

r2

r3

c1

c2
8888888888 ttttttt

Definition 2.3. A filling F of a shape S places ◦ or • (alternative notations: ◦ or
×, 0 or 1) in every cell of the shape:

◦ •
• ◦ • ◦
◦ ◦

.
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Notation 2.4. Let c be a cell of a shape S or filling F . Then, S\c and F\c denote
the shape or filling with the cell removed.

Definition 2.5. Deleting some rows and columns from a shape or filling makes a
minor. Given a shape S, take subsets R = {r1 < r2 < · · · < rk} of its rows, and
C = {c1 < c2 < · · · < cl} of its columns. The minor MR,C(S) of a shape S is a
k × l shape which has a box in position i, j iff S has a box in position ri, cj . A
minor of a filling also copies the contents of those boxes. Here is a {1, 2}× {1, 3, 4}
minor of the filling above:

◦ •
◦ • .

The minors of S are exactly the induced subgraphs of GS .

Definition 2.6. A k×k-step in a graph consists of moving from a cell c to another
cell d so that both are in the same k × k minor with all k2 cells present. A shape
is k × k-connected if one can get from any cell to any other cell by a sequence of
k × k-steps. A shape need not be topologically connected to be k × k-connected:

2× 2-connected 1× 1-connected not k × k-connected

.

For the purpose of 2× 2 pattern avoidance, it will be enough to prove theorems for
2 × 2-connected shapes. Such shapes have a 4-cycle-connected GS — one can get
from any edge to any other edge by walking along adjacent edges of 4-cycles.

Definition 2.7. A grid shape S is horizontally connected if, after removing the
shape’s empty columns, the cells in every row form a single, unbroken block. Ver-
tical connectivity is analogous. A shape is connected if it is both horizontally and
vertically connected. The examples from Definition 2.6 are: (i) 2 × 2-connected,
but horizontally- and vertically-disconnected; (ii) 1 × 1-connected, and connected
(iii) k × k-disconnected, but connected. So, neither condition implies the other.

2.2. Patterns. With permutations, there are several ways of defining pattern match-
ing (avoidance). The standard definition says that a permutation contains a 132-
pattern if its word a1a2 . . . an has the property that for some i < j < k, aj > ak >
ai. Other reasonable definitions happen to have a less interesting structure:

(1) For some i < j < k, the permutation’s word has aiajak = 132. Far
fewer permutations match this pattern, and their number is equally easy
to compute for all patterns.

(2) For some i, the permutation’s word has aiai+1ai+2 = 132. These are also
easy to count, and are very few in number.

Our definition of patterns for fillings generalizes standard permutation pattern-
avoidance. A permutation σ ∈ Sn can be represented as a “rook diagram”. We
take an n × n shape and fill it with ◦s, except for a • in each cell i, j such that



6 ALEXEY SPIRIDONOV

σi = j. So, 43152 becomes:
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ •
◦ • ◦ ◦ ◦
• ◦ ◦ ◦ ◦
◦ ◦ ◦ • ◦

This permutation contains 132, namely 152 in positions 345. Correspondingly, the
{1, 2, 5} × {3, 4, 5} minor of the rook diagram is equal to

• ◦ ◦
◦ ◦ •
◦ • ◦

A permutation is 132-avoiding if and only if its rook diagram avoids this minor.
The generalization of such patterns to arbitrary shapes and fillings is what you
would expect:

Definition 2.8. A pattern p is simply a filling of a shape. A filling F contains the
pattern p if some minor of F equals p.

There are, just like for permutations, alternative definitions. Some are mentioned
in Subsection 1.2. Here is another that we have not seen in the literature. A filling
F contains the pattern p if some minor of F with continuous row and column
sets is equal to p. Just like for permutations, there are fewer fillings containing a
given pattern, and computations are a little easier because one does not have to
check O(m2n2) minors. Pattern-avoidance is a local constraint in this definition,
and should be more closely related to the geometry of the shape. This alternative
definition might be worth investigating in detail, but it is beyond the scope of this
paper.

Returning to Definition 2.8, the natural question is to characterize the number
of fillings of a fixed shape S that avoid (or contain) certain p. We will focus on a
specialization of this problem.

Definition 2.9. A 2 × 2-pattern pair, further called pattern pair, or pp for short,
is an unordered pair of 2 × 2 patterns. For example:

(◦ •
• ◦

∣∣• ◦
◦ •

)
. A filling F avoids

a pattern pair (p1|p2) if it contains neither p1 nor p2. We will call F a P -avoiding
filling, or a P -paf for short.

Let’s fix a shape S and a pattern pair P . In this paper, we will not count the
number of fillings of S that avoid P (although that is an interesting question in its
own right). Instead, we will describe a number of equivalent pps:

Definition 2.10. P1 = (p1
1|p1

2) and P2 = (p2
1|p2

2) are equivalent if the fillings that
avoid P1 are equinumerous with P2-pafs. Equally well, one may require the fillings
containing these pps to be equinumerous.

Now it is clear why we may prove theorems only for 2× 2-connected shapes:

Remark 2.11. A 2× 2-disconnected shape contains a pattern iff one of its compo-
nents does.

A special case is when the component has exactly one cell. We call such cells
detached. This shape consists entirely of detached cells:
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.

Each detached cell can be filled independently of all other cells, and therefore simply
doubles the number of fillings avoiding the given pattern pair.

The first observation about equivalent pps is that we can take a “complement”
of any pp, by replacing ◦ with •, and vice-versa. For example, the complement of
P =

(◦ •
◦ ◦

∣∣• •
• ◦

)
is P̄ =

(• ◦
• •

∣∣◦ ◦
◦ •

)
.

Fact 2.12. Given a shape S and a pp P , P -pafs are equinumerous with P̄ -pafs.
The bijection is obvious: F is a P -paf iff F̄ is a P̄ -paf.

Since P and P̄ are necessarily equivalent, we will identify every pp with its
complement. Now, in order to enumerate all pps, we will number the single patterns.
The pattern

p =
a b
c d

will be assigned number n(p) = a + 2b + 4c + 8d = dcba2, where ◦ is 0 and • is
1. Then, n(p̄) = 15 − p = 11112 − dcba2 is the number of its complement. For
consistency, we will write pps as (p1|p2) with n(p1) < n(p2).

There are 24 = 16 single patterns, and consequently 16·15
2 = 120 pattern pairs.

There are 8 self-complementary pattern pairs (this happens whenever n(a)+n(b) =
15). So, after identifying complements, we are left with 120−8

2 + 8 = 64 classes of
pattern pairs.

3. Pattern Pair Equivalence

We will attempt to answer two related questions:
(1) For a given class of shapes, identify the sets of pps that are always equivalent

for those shapes.
(2) Given two pps, identify the class of shapes, for which they are equivalent.

Obviously, having a complete answer to the second problem would solve the first as
well. Restricting one’s attention to a specialized class like Young diagrams might
make proving equivalences easier. However, we have not found this to be the case.
Therefore, for each pair of pps, this paper describes a class of shapes, for which the
pps are equivalent. Outside of this class, we are not able to say that two patterns
will not be equivalent for a given shape. Such a result may not be possible — it
seems very hard to rule out numerical coincidences, which would lead to sporadic
exceptions. For each of our equivalences, we will say whether, empirically, there are
many cases of equinumerous fillings of shapes outside the described class. Table 1
on page 8 summarizes the pp equivalences characterized in this paper.

There are four distinct equivalence proofs in the paper, corresponding to the
four parts of the table. We get the 14 results simply by rotating the pattern pairs.
This is possible because

(◦ •
• ◦

∣∣• ◦
◦ •

)
is a very symmetrical pp. It is invariant under row

swaps, column swaps, and transposition. In fact,
(◦ •
• ◦

∣∣• ◦
◦ •

)
-avoidance is a property

of the shape’s graph, oriented according to the filling. Consequently, the argument
for counting its pafs is invariant under all these symmetries. On the other hand, the
shapes on the left-hand sides of the table’s equivalences are altered by the above
transformations, and we get 4 variants of each, with completely symmetrical proofs.
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Section 5 Section 4 Section 6(◦ ◦
◦ ◦

∣∣• ◦
◦ ◦

)
↔

(◦ •
• ◦

∣∣• ◦
◦ •

) (◦ ◦
◦ •

∣∣• ◦
◦ •

)
↔

(◦ •
• ◦

∣∣• ◦
◦ •

) (• ◦
◦ ◦

∣∣◦ ◦
• ◦

)
↔

(◦ •
• ◦

∣∣• ◦
◦ •

)
(0|1) (6|9) (8|9) (6|9) (1|4) (6|9)(◦ ◦
◦ ◦

∣∣◦ •
◦ ◦

)
↔

(◦ •
• ◦

∣∣• ◦
◦ •

) (◦ ◦
• ◦

∣∣◦ •
• ◦

)
↔

(◦ •
• ◦

∣∣• ◦
◦ •

) (• ◦
◦ ◦

∣∣◦ •
◦ ◦

)
↔

(◦ •
• ◦

∣∣• ◦
◦ •

)
(0|2) (6|9) (4|6) (6|9) (1|2) (6|9)(◦ ◦
◦ ◦

∣∣◦ ◦
• ◦

)
↔

(◦ •
• ◦

∣∣• ◦
◦ •

) (◦ •
◦ ◦

∣∣◦ •
• ◦

)
↔

(◦ •
• ◦

∣∣• ◦
◦ •

) (◦ ◦
• ◦

∣∣◦ ◦
◦ •

)
↔

(◦ •
• ◦

∣∣• ◦
◦ •

)
(0|4) (6|9) (2|6) (6|9) (4|8) (6|9)(◦ ◦
◦ ◦

∣∣◦ ◦
◦ •

)
↔

(◦ •
• ◦

∣∣• ◦
◦ •

) (• ◦
◦ ◦

∣∣• ◦
◦ •

)
↔

(◦ •
• ◦

∣∣• ◦
◦ •

) (◦ •
◦ ◦

∣∣◦ ◦
◦ •

)
↔

(◦ •
• ◦

∣∣• ◦
◦ •

)
(0|8) (6|9) (1|9) (6|9) (2|8) (6|9)

Section 7(• ◦
◦ ◦

∣∣• ◦
◦ •

)
↔

(◦ ◦
◦ •

∣∣• ◦
◦ •

)
(1|9) (8|9)(◦ •
◦ ◦

∣∣◦ •
• ◦

)
↔

(◦ ◦
• ◦

∣∣◦ •
• ◦

)
(2|6) (4|6)

Table 1. Pattern pair equivalences described in this paper, by
section. In order to make the symmetry clearer, we use

(◦ ◦
◦ •

∣∣• ◦
◦ •

)
instead of

(◦ •
• ◦

∣∣• •
• ◦

)
mentioned in the introduction.

The top three parts of the table are arranged by the strength of the required
assumptions, strongest to weakest from left to right. See the corresponding sections
and Subsection 8.3 for the details.

Although the equivalences in Section 7 follow by combining two equivalences from
Section 4, the proof in Section 7 works for more general shapes, and is bijective.
Empirically, too, the patterns from Section 7 can be equivalent in shapes where
neither is equivalent to

(◦ •
• ◦

∣∣• ◦
◦ •

)
.

Regarding empirical data — we have computed pp equivalence classes for a
substantial number of shapes of varying degrees of “regularity”. It is difficult to
make sharp conjectures about classes of shapes based on these data, because a class
of shapes can have a rather opaque definition (see e.g. Theorem 4.10 and Definition
4.1). However, we present some observations and guesses in Section 8.

3.1. A note about pattern and shape symmetry. Before describing the equiv-
alences in Table 1 on page 8, we should point out one source of trivial equivalences.
There are two structure-preserving transformations on both patterns and shapes:
row order reversal, and transposition (column reversals are row reversals conjugated
by transposition). If one pp is mapped to another pp by some combination T of
these transformations, then these pps will be equivalent in all shapes that have a T -
symmetry. The possible symmetries T are: the 90◦-, 180◦-, 270◦-degree rotations,
and reflections across the horizontal, vertical, and two diagonal axes. Most shapes
are not symmetric; these equivalences, although easy to list, usually do not apply.

4.
(◦ •
• ◦

∣∣• •
• ◦

)
and

(◦ •
• ◦

∣∣• ◦
◦ •

)
: -diagrams and Acyclic Orientations

This pair of pps started it all. Their equivalence was first proved by Alex Post-
nikov [7], using a recurrence for -diagrams found by Lauren Williams [9] and his
analogous recurrence for acyclic orientations.
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4.1. -diagrams. Originally, a -diagram was defined to be a binary filling of a
Young diagram having the -property: if two cells located at the bottom-left and
top-right corners of a rectangle contain •, then the cell at the bottom-right corner
(making a “ ” shape) must also contain •:

•

• −→

•

• •

In our terminology, a -diagram is a
(◦ •
• ◦

∣∣• •
• ◦

)
-avoiding filling. This definition is

valid for all shapes. There is a caveat here: in a Young diagram, one always has
the upper-left cell of a 2× 2 minor. In general, it is quite possible that it’s missing,
but our definition requires this cell to be present. Another way to interpret the -
property is that the upper-left cell is irrelevant, and need not even be present. We
chose to have a complete 2×2 minor because this naturally preserves the connection
between acyclic orientations and -diagrams — the proof for acyclic orientations
requires the upper-left cell to be present. Nonetheless, it would be an interesting
generalization to permit incomplete minors; [3, 2] have some related results.

Lauren Williams introduced the polynomial FS(q), where the coefficient of qk

counts the number of
(◦ •
• ◦

∣∣• •
• ◦

)
-avoiding fillings of shape S that contain k •s. She

gave a simple recurrence for FS(q) in Young diagrams. We will now see that this
recurrence generalizes to a much larger class of shapes.

The recurrence starts at a bottom-right corner c of the shape — that is, the cell
must be rightmost in its row, and bottommost in its column. In the two shapes
below, the cells marked with ∗ are such corners:

∗
∗

∗
∗

.

The cells above c and the cells to the left of c, ignoring discontinuities, form the
bottom and right edges of a rectangle. In these shapes, the corner c is marked with
∗, while the edges are marked with dashes:

∗ ∗ .
(a) (b)

In order for the recurrence to work, all the cells in this rectangle must be present as
in (a) and (b). We will call such rectangles complete. Because of Remark 2.11, we
will also require the shape to be 2×2-connected. To compute FS(q), the recurrence
requires the values of FS(q) on four smaller shapes, illustrated on the example (a)
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above:
S1 – delete corner S2 – delete c’s row

S3 – delete c’s column S4 – delete both

.

These deletions may render the shape 2 × 2-disconnected. To compute FSi , we
will split Si into its 2 × 2-connected components S(j)

i , each a separate shape, and
multiply their polynomials:

(2) FSi(q) =
∏
j

F
S

(j)
i

(q).

Some of the components will be detached cells, each of which will contribute a
factor of (1 + q), because it may be filled with either ◦ or •, independently of any
other cell. In our example, the four shapes simplify to one (modulo detached cells,
which are responsible for the (1 + q)i factors):

S
(1)
1 = S

(1)
2 = S

(1)
3 = S

(1)
4 = ,

FS1 = (1 + q)2F
S

(1)
1

FS2 = (1 + q)F
S

(1)
2

FS3 = (1 + q)F
S

(1)
3

FS4 = F
S

(1)
4

.

Now, the recurrence (which we will define in Lemma 4.3) may be used to compute
F for every S

(j)
i . The decomposition of Si into S(j)

i is necessary to cover a larger
class of shapes. Without taking 2× 2-components, it would be impossible to apply
the recurrence to shapes like (c), and to compute F for shapes like (d) that reduce
to (c):

∗ ∗
(c) (d)

.

This points out an important problem: for some shapes, we may be unable to
repeatedly apply the recurrence all the way down to the empty shape. The worst
case is repeated expansion along S1 (delete corner); in order for it to succeed, this
definition must apply:

Definition 4.1. A shape is bottom-right complete rectangle-erasable (CR-erasable
for short) if all of its 2× 2-components satisfy the following recursive rule. In each
component S(j), considered as a separate shape, we can find a special bottom-right
corner c with two properties. Firstly, the corner must have a complete rectangle.
Secondly, the shape S(j)\c must be bottom-right CR-erasable. As the base case,
the empty shape is CR-erasable.
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Lemma 4.2. If S(j) is a bottom-right CR-erasable 2×2-connected component, use
the special corner c to obtain S1, S2, S3, and S4. Then, the Si are bottom-right
CR-erasable.

Proof. S1 is CR-erasable by definition. In S2, we have deleted a whole row R;
nonetheless, it is still CR-erasable. To see this, erase S1 and S2 in lockstep. Let
d be the cell about to be deleted in S1 (actually, a sub-sub-...-sub-component of
S1, because the deletion process fragments the shape). If d was in R, then there
is nothing to do in S2. Otherwise, d still has a complete rectangle in the sub-...-
component of S2, because deleting a whole row cannot make a rectangle incomplete.
The argument showing that S3 and S4 are CR-erasable is analogous. �

The shape (b) introduced above is not bottom-right CR-erasable. We can elimi-
nate the following cells marked with ∗, and will get stuck with a single corner that
has an incomplete rectangle:

∗
∗
∗
∗
.

The recurrence cannot be computed, and indeed, for this shape there are 5566(◦ •
• ◦

∣∣• •
• ◦

)
-pafs, but 5476

(◦ •
• ◦

∣∣• ◦
◦ •

)
-pafs. The reader should check that, in contrast,

the recurrence succeeds for the shape (a).
We have now completely described what the recurrence needs to compute FS(q).

It remains to describe how it works:

Lemma 4.3. If the shape S is bottom-right CR-erasable, then the generating poly-
nomial of

(◦ •
• ◦

∣∣• •
• ◦

)
-avoiding fillings of S with k •s can be computed using only the

recurrence

(3) FS(q) =
∏
j

(
qF

S
(j)
1

(q) + F
S

(j)
2

(q) + F
S

(j)
3

(q)− F
S

(j)
4

(q)
)
,

where S(j) are the 2× 2-connected components of S considered as separate shapes,
and S

(j)
i are copies of S(j) after deleting the special corner, the cells in its row,

column, and row plus column, as discussed above. The initial condition is F∅(q) = 1.

Proof. Most of the proof is done already: we saw that FS is a product over 2× 2-
connected components, and we showed that the S(j)

i are CR-erasable. It remains
to explain the expression inside the parentheses.

Consider a particular S(j); by Definition 4.1, it has a special bottom-right corner
c with a complete rectangle (the next cell to be deleted). If the corner contains •,
then no forbidden pattern can involve this corner (because both patterns have ◦ in
the bottom-right corner). So, the number of such pafs is F

S
(j)
1

(q), and we multiply
it by q to account for • in the corner.

If the corner contains ◦, this constrains the cells above and to the left of c. Since
the shape contains c’s complete rectangle, • must not be simultaneously present in
both the column above and in the row to the left of c. Either c’s row or c’s column
must consist entirely of ◦s. If it is the row, then it cannot participate in a forbidden
pattern — both patterns have at least one • in each row. The number of ways to fill
the remaining cells is enumerated by F

S
(j)
2

(q). The reasoning for the column case is
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identical, and that contributes F
S

(j)
3

(q). However, this double-counts the case when
both the row and the column are filled with ◦s, so we subtract F

S
(j)
4

(q). �

4.2. Acyclic orientations. Recall from Definition 2.2 that a bipartite graph GS
corresponds to each shape S. A filling of the shape gives an orientation: the
edge points from a row to a column if its cell contains ◦, and from a column to
a row otherwise. A cycle in this graph corresponds to a sequence of cells in the
filling alternating between “same column, different row” and “same row, different
column”, with contents (independently) alternating between ◦ and •. Here is an
example:

(4)

S cycle in S GS

• ◦ ◦
◦ • ◦
◦ •

• ◦
◦ •
◦ • r1 r2 r3c1

c2

c3

oonnnnnnnnnnn
66

PPPPPPPPPPP

PPPPPPPPPPP
((

oo

9999
9999��

����
��

QQQQQQQQQQQ

QQQQQQQQQQQ
hh

mmmmmmmmmmm

mmmmmmmmmmm
66

.

One of the graph’s cycles is shown with double lines, and the cells of S that corre-
spond to edges of the cycle are isolated in the middle shape.

Note that in this example, there is also a 4-cycle: c1 − r1 − c2 − r2, which
corresponds to the minor {r1, r2} × {c1, c2} in the filling. In fact, every 4-cycle
is a 2 × 2 minor filled with one of the two patterns

(◦ •
• ◦

∣∣• ◦
◦ •

)
. So, 4-acyclic fillings

are exactly the
(◦ •
• ◦

∣∣• ◦
◦ •

)
-avoiding fillings. We will soon see that 4-cycles are present

in every cyclic filling of a large class of shapes. But first, we need to extend the
“complete rectangle” that we defined for bottom-right corners of -diagrams:

Definition 4.4. A cell c in shape S has a complete rectangle (CR) if for every
choice of cr from c’s row, and cc from c’s column, there is a cell crc in S at the
intersection of cc’s row and cr’s column. Here is an example, with c marked by ∗,
the crs marked by −, ccs marked by |, and the crcs left blank:

∗

This implies that each choice of c, cr, cc, crc is a 2× 2 minor, and that the vertices
of the edges adjacent to c in GS induce a complete bipartite subgraph. We will call
such cells CR-cells.

Lemma 4.5. Let S be a 2 × 2-connected shape with a CR-cell c. Then S′ = S\c
has at most three 2 × 2-connected components, all but one of which are detached
cells that are leaf edges of GS′ .

Proof. Let nr and nc be the number of cells (including c) in c’s row and column,
respectively. Both are at least 2 — otherwise c wouldn’t be 2×2-connected. There
are 4 cases: nr, nc > 2; nr = 2, nc > 2; nr > 2, nc = 2; nr = nc = 2. We will use
some pictures to illustrate them, and will always place c as the bottom-right-most
cell. This is legitimate, because 2× 2-connectivity is a property of GS , and as such
is invariant under rearrangements of rows and columns. Here are rectangles of c in
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each case (> 3 neighbors in either direction works just like 3):

∗ ∗ ∗ ∗
.

The “∗” marks c, while “−” and “|” emphasize that there are no other cells in those
rows and columns. In the first case, removing c will leave a 2× 2-connected shape.
If that were not true, some two cells d and e that are in a 2 × 2 minor together
with c would become disconnected. But, every 2 × 2 minor involving c belongs to
its rectangle. With nr > 2, nc > 2, the rectangle remains 2 × 2-connected after
deleting c, and no such d and e exist.

The second and third case are symmetric, so we will cover only nr = 2, nc > 2.
The cell cc in c’s column becomes detached — after c is deleted, cc is the only cell
in its column, and thus cannot be in a 2 × 2 minor (one component). Moreover,
cc’s column is a leaf vertex in GS′ , because cc is its only edge. The other cells in
the rectangle stay interconnected through minors not involving c. So, the rest of
the filling, S′\cc, is 2× 2-connected (a second component).

The fourth case is not much different from the second and third. The cells cr
and cc are left alone in their row and column, respectively, and therefore become
detached (two components, two leaf edges). The connections of the remaining
cell crc to the rest of the shape are intact, and S′\{cr, cc} is therefore the third
component.

�

Now, we extend the notion CR-erasability from Definition 4.1 to allow cells other
than bottom-right corners.

Definition 4.6. Let P be a cell predicate, such as “bottom-right”; we will omit P
to mean “any”. A shape is P complete rectangle-erasable (P CR-erasable for short)
if all of its 2×2-components satisfy the following recursive rule. In each component
S(i), considered as a separate shape, we can find a special CR-cell c satisfying P ,
such that S(i)\c is P CR-erasable. The empty shape is P CR-erasable.

From Lemma 4.5, we see that if a 2 × 2-connected shape S is CR-erasable, the
deletion procedure is particularly simple. First, we delete some CR-cell from S.
Then, we delete the resulting detached cells, and we are once again left with a
2× 2-connected CR-erasable shape.

Lemma 4.7. Suppose that S is a 2× 2-connected, CR-erasable shape. Then, any
cyclic filling of S contains a 4-cycle.

Proof. Let F be a filling of S containing a cycle C. Let c be the special CR-cell
given by by CR-erasability.

Case 1: Suppose that c belongs to the cycle C. Then, the row and column of
c must each contain another cell from the cycle — cr and cc, respectively. With-
out loss of generality, we may assume that c is filled with • (otherwise, take the
complementary filling – it will have the same cycles). Thus, cr and cc are filled
with ◦. Now, consider the cell crc in cr’s column, and cc’s row (it exists because
c has a complete rectangle). If crc is filled with •, the four cells c, cr, cc, crc are a
4-cycle, and we are done. So, assume that crc is filled with ◦. Since cycles alternate
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rows and columns, there must be a further element of the cycle c′r in cr’s column.
Similarly, we get c′c in cc’s row. Both c′r and c′c must be filled with •. In this
illustration, the bottom-right corner is c, the detached cell is crc:

◦ ◦ •

•

◦ •

.

Therefore, we can replace c′r − cr − c − cc − c′c by c′r − crc − c′c in C to obtain a
shorter cycle C ′, which avoids c. This brings us to case 2.

Case 2: If c does not belong to the cycle, we can delete it. This might create a
detached cell in c’s row or column, or a cell in each, as in the proof of Lemma 4.5.
Suppose cc is the detached cell from c’s column. Then, cc could not have been in
C either, because cc ∈ C implies that there is a second cell d ∈ C in cc’s column.
But, the only possibility for d is c, and c /∈ C. An analogous argument shows that
the cycle does not pass through the detached cell in c’s row. Thus, the cycle lies
entirely in the remaining 2× 2-connected component F ′. This new filling is strictly
smaller, and satisfies our initial assumptions, so we may repeat the argument. After
finitely many iterations, the number of cells will become ≤ 4, but the only cyclic
filling on ≤ 4 cells is the 4-cycle. �

The proof of Lemma 4.7 can be modified slightly to obtain a result with different
assumptions:

Corollary 4.8. Suppose that the shape S can be erased by deleting a CR-cell,
and repeating the procedure on the resulting shape (without breaking it into 2 × 2-
components). The reader is invited to check that, in particular, this condition holds
for connected shapes (see Definition 2.7). Then, a 4-acyclic filling of S is acyclic.

Proof. We can use the unmodified “Case 1” from the above proof. If we end up
making a shorter cycle that does not pass through c, we delete c. The resulting
filling still has a deletion sequence of CR-cells, so we win by induction on the size
of the filling. �

Although the hypotheses of Lemma 4.7 and Lemma 4.8 sound similar to Defini-
tion 4.1, they are not more or less general. Specifically, in these results, the cells
that we delete do not have to be corners. But, this comes with extra assumptions:
2× 2-connectedness, or erasability without decomposing into 2× 2-components.

For shapes satisfying one of these conditions, acyclic orientations are the
(◦ •
• ◦

∣∣• ◦
◦ •

)
-

avoiding fillings. Like with -diagrams, this pattern-avoidance model is not perfect
— in this case, if the shape is arbitrary, we cannot express acyclicity in terms of
small minors. For example, one needs a 3× 3 minor to detect a cycle in this shape
(see the example (4)):

(5) .

It has 64
(◦ •
• ◦

∣∣• ◦
◦ •

)
-avoiding (4-acyclic) fillings, and 62 acyclic ones. It is CR-erasable,

but is not 2× 2-connected, and cannot be CR-erased without splitting into 2× 2-
components. Thus, it demonstrates that the extra assumptions in Lemma 4.7 and
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Lemma 4.8 are necessary. The following shape is 2 × 2-connected, but is not CR-
erasable:

.

It also has more 4-acyclic fillings – 14894 – than acyclic ones – 13790. It might be
an interesting combinatorial problem to describe the graphs of such shapes.

4.3. Recurrence for
(◦ •
• ◦

∣∣• ◦
◦ •

)
-avoidance. In Lemma 24.2 of [7], Alex Postnikov

proved a recurrence for the chromatic polynomial χGλ(t) of the graph of a Young
diagram. He then specialized it to obtain a recurrence for the number of acyclic
orientations of Gλ. We will generalize his result to all CR-erasable shapes. However,
the chromatic polynomial does not decompose across 2 × 2-components. If it did,
the recurrence for the chromatic polynomial would hold for all CR-erasable graphs,
and we would get the same recurrence for

(◦ •
• ◦

∣∣• ◦
◦ •

)
-avoiding fillings as for acyclic

fillings. But, this is impossible as shown by example (5).
Therefore, we have to specialize to

(◦ •
• ◦

∣∣• ◦
◦ •

)
-avoidance straight away.

Lemma 4.9. Let AS be the number of
(◦ •
• ◦

∣∣• ◦
◦ •

)
-pafs of shape S. If the shape S is

CR-erasable, then AS can be computed using only the recurrence

(6) AS =
∏
j

(
A
S

(j)
1

+A
S

(j)
2

+A
S

(j)
3
−A

S
(j)
4

)
,

where S(j) are the 2× 2-connected components of S considered as separate shapes,
and S(j)

i are copies of S(j) after deleting the special cell, the cells in its row, column,
and row plus column, just like in Lemma 4.3. The initial condition is A∅ = 1.

Proof. We need to show that for every 2 × 2-connected shape S(j) with a CR-cell
c, the number of

(◦ •
• ◦

∣∣• ◦
◦ •

)
-pafs is given by the quantity in the parentheses. The rest

comes together just like in Lemma 4.3.
By Lemma 4.7, it is enough to compute the number of acyclic fillings of S(j). By

Postnikov’s Lemma 24.2 [7], the chromatic polynomial χS(j) of GS(j) can be written
as

(7) χS(j)(t) = χ
S

(j)
1

(t)− 1
t

(
χ
S

(j)
2

(t) + χ
S

(j)
3

(t)− χ
S

(j)
4

(t)
)
.

Technically, Postnikov’s proof was written for a corner of a Young shape, not a
CR-cell of a 2 × 2-connected shape. However, his proof uses only the structure of
GS , and disregards the positions of rows and columns. Therefore, it generalizes
without modifications to any shape with a CR-cell. Further following Postnikov,
we specialize (7) to t = −1, to obtain a relation in terms of the numbers of acyclic
orientations (−1)nχS(j)(−1). The exponent n is the number of vertices in the graph
of S(j), and because we only delete the edges, the graph of S(j)

i . So, if aoS is the
number of acyclic fillings of shape S, we get

aoS(j) = ao
S

(j)
1

+ ao
S

(j)
2

+ ao
S

(j)
3
− ao

S
(j)
4
.

That is not quite the end — we need to show that acyclic fillings and
(◦ •
• ◦

∣∣• ◦
◦ •

)
-

pafs are equinumerous in the sub-shapes S(j)
i (for the left-hand side, we know this
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already). For S(j)
1 , look back at the proof of Lemma 4.5. The shape has one large

CR-erasable 2× 2-connected component, and at most two leaf edges. No cycle can
pass through leaf edges, and the big component is okay by Lemma 4.7.

The proofs for S(j)
2 , S(j)

3 , and S(j)
4 are slight modifications of the same argument,

which we omit due to space limitations. Briefly, the shape remains 2× 2-connected
after these whole-row or whole-column deletions, and the proof that the new shape
is CR-erasable is just like Lemma 4.2. Thus, Lemma 4.7 applies. �

4.4. Equivalence of
(◦ •
• ◦

∣∣• •
• ◦

)
and

(◦ •
• ◦

∣∣• ◦
◦ •

)
, and its symmetries. Following [7],

we now specialize (3) with q = 1 to get a recurrence counting the number of -
diagrams of shape S:

(8) S =
∏
j

(
S

(j)
1

+
S

(j)
2

+
S

(j)
3
−

S
(j)
4

)
.

This holds for all bottom-right CR-erasable shapes. Such shapes are, of course, CR-
erasable, and so the

(◦ •
• ◦

∣∣• ◦
◦ •

)
recurrence also applies. The recurrences are identical,

and have the same initial conditions, ∅ = A∅ = 1. To summarize:

Theorem 4.10.
(◦ •
• ◦

∣∣• •
• ◦

)
and its complement

(◦ ◦
◦ •

∣∣• ◦
◦ •

)
are equivalent to

(◦ •
• ◦

∣∣• ◦
◦ •

)
for every bottom-right CR-erasable shape. �

The recurrence for
(◦ •
• ◦

∣∣• •
• ◦

)
depends on the bottom-right corner because the

pattern pair has an asymmetry that makes this corner special. The recurrence for(◦ •
• ◦

∣∣• ◦
◦ •

)
works in a far more general context, including any corner CR-erasability. If

we rotate
(◦ •
• ◦

∣∣• •
• ◦

)
, a different corner type will become special. Then, we can rotate

the proofs and definitions of Subsection 4.1 to obtain some symmetric results. The
reader may wish to learn to read upside-down and sideways before continuing.

Theorem 4.11. The analogs of Lemma 4.3, (8), and Theorem 4.10 hold for:

(1)
(◦ ◦
• ◦

∣∣◦ •
• ◦

)
and complement

(• ◦
◦ •

∣∣• •
◦ •

)
in bottom-left CR-erasable shapes.

(2)
(◦ •
◦ ◦

∣∣◦ •
• ◦

)
and complement

(• ◦
◦ •

∣∣• ◦
• •

)
in top-right CR-erasable shapes.

(3)
(• ◦
◦ ◦

∣∣• ◦
◦ •

)
and complement

(◦ •
• ◦

∣∣◦ •
• •

)
in top-left CR-erasable shapes.

Other symmetries, like reflections, do not add any new pattern pairs to this list. �

Empirically, the characterization of these equivalences in terms of CR-erasable
shapes does not look tight. There appears to be a sizable class of unexplained
shapes that includes

and .

These shapes have no CR bottom-right corners, but have equivalent
(◦ •
• ◦

∣∣• •
• ◦

)
and(◦ •

• ◦

∣∣• ◦
◦ •

)
nonetheless.

5.
(◦ ◦
◦ ◦

∣∣• ◦
◦ ◦

)
and

(◦ •
• ◦

∣∣• ◦
◦ •

)
: The Same Recurrence

We can get a recurrence for counting
(◦ ◦
◦ ◦

∣∣• ◦
◦ ◦

)
-pafs by exactly the same method.

There is only a small difference in the way the counts are refined by the contents
of the fillings:
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Lemma 5.1. If the shape S is bottom-right CR-erasable, then OS(q), the generating
polynomial of

(◦ ◦
◦ ◦

∣∣• ◦
◦ ◦

)
-avoiding fillings of S with k ◦s can be computed using only

the recurrence

(9) OS(q) =
∏
j

(
O
S

(j)
1

(q) + q
(
O
S

(j)
2

(q) +O
S

(j)
3

(q)−O
S

(j)
4

(q)
))

,

where S(j) are as in Lemma 4.3, and the initial condition is O∅(q) = 1.

Proof. The proof is completely analogous to that of Lemma 4.3. If the corner
contains •, we are free to delete it — this makes the S(j)

1 term. Otherwise, the
corner’s row or column (or both) consists entirely of •s. Such a row or column
cannot participate in either pattern of the pp. So, we get the remaining three
terms (the deleted ◦ corner gives the factor of q). �

We specialize the recurrence with q = 1, rotate the pattern pair, and get all the
analogous equivalences:

Theorem 5.2. Not listing complements, the following pps are equivalent to
(◦ •
• ◦

∣∣• ◦
◦ •

)
:

for bottom-right corner CR-erasable shapes —
(◦ ◦
◦ ◦

∣∣• ◦
◦ ◦

)
, bottom-left —

(◦ ◦
◦ ◦

∣∣◦ •
◦ ◦

)
, top-

left —
(◦ ◦
◦ ◦

∣∣◦ ◦
◦ •

)
, top-right —

(◦ ◦
◦ ◦

∣∣◦ ◦
• ◦

)
. �

Empirically, we found no shape with equivalent
(◦ ◦
◦ ◦

∣∣• ◦
◦ ◦

)
and

(◦ •
• ◦

∣∣• ◦
◦ •

)
, such that

the shape is not bottom-right CR-erasable.

6.
(• ◦
◦ ◦

∣∣◦ ◦
• ◦

)
and

(◦ •
• ◦

∣∣• ◦
◦ •

)
: The Same Recurrence With a Twist

The pair
(• ◦
◦ ◦

∣∣◦ ◦
• ◦

)
requires two changes. Firstly, if this pp is present in a shape

S, then it also belongs to any S′ obtained by permuting rows of S. This is because
swapping the rows of the pp does not change it. So, the relevant requirement for a
cell c this time a right complete rectangle — c is a CR-cell that is rightmost in its
row. The recurrence lemma in this case does not give a nice way to count pafs by
the number of ◦s or •s they contain.

Lemma 6.1. If the shape S is right CR-erasable, then the number RS of
(• ◦
◦ ◦

∣∣◦ ◦
• ◦

)
-

pafs of S can be computed using only the recurrence

(10) RS =
∏
j

(
R
S

(j)
1

+R
S

(j)
2

+R
S

(j)
3
−R

S
(j)
4

)
,

where S(j) are as in Lemma 4.3, and the initial condition is R∅ = 1.

Proof. Again, we need to justify the decomposition into the four sub-shapes. If c is
the special right CR-cell, and it contains •, it is not involved in forbidden patterns
and can be deleted to make S(j)

1 . Now comes the second change from the previous
proofs. If c contains ◦, and another cell d in its column contains ◦, then every other
cell in c’s row must be identical to the corresponding cell in d’s row. Indeed if the
two cells in one column were different, we would get a pattern from

(• ◦
◦ ◦

∣∣◦ ◦
• ◦

)
. Thus,

there are two cases: either c’s column consists of •s, or c’s row is fully replicated by
another row. In the first case, no cells in the column can participate in forbidden
patterns, and we can delete the column to make S

(j)
3 . In the second case, if a

forbidden pattern involves c’s row, there is a copy of this pattern using d’s row
instead of c’s row. So, the pattern would have to be present in S

(j)
2 to show up
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in S(j). Therefore, we can delete the bottom row, and count fillings of S(j)
2 . Just

as before, this double-counts the case where the bottom row is replicated by some
other row and the column consists of •s; that’s S(j)

4 . �

Theorem 6.2. Omitting complements, the following pps are equivalent to
(◦ •
• ◦

∣∣• ◦
◦ •

)
:

for right CR-erasable shapes —
(• ◦
◦ ◦

∣∣◦ ◦
• ◦

)
, left —

(◦ •
◦ ◦

∣∣◦ ◦
◦ •

)
, top —

(◦ ◦
• ◦

∣∣◦ ◦
◦ •

)
, bottom

—
(• ◦
◦ ◦

∣∣◦ •
◦ ◦

)
. �

Empirically, we found no shape such that
(◦ •
◦ ◦

∣∣◦ ◦
◦ •

)
is equivalent to

(◦ •
• ◦

∣∣• ◦
◦ •

)
, but

the shape is not left CR-erasable.

7.
(• ◦
◦ ◦

∣∣• ◦
◦ •

)
and

(◦ ◦
◦ •

∣∣• ◦
◦ •

)
: A Bijection

If a shape’s 2×2-connected components are horizontally- and vertically-connected
(Definition 2.7), the following bijection identifies

(• ◦
◦ ◦

∣∣• ◦
◦ •

)
-avoiding fillings with(◦ ◦

◦ •

∣∣• ◦
◦ •

)
-pafs:

Algorithm 7.1. Let the diagonal order for a shape of size m× n be the following
total order on all cell positions:

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), . . .

That is, order pairs (i, j) with 1 ≤ i ≤ m and 1 ≤ j ≤ n, first by increasing i + j,
and then by increasing i.

The smallest-rectangle order is the total order on the minors of the shape, where
minors {i1, i2} × {j1, j2} are first ordered by increasing size (i2 − i1, j2 − j1) in the
diagonal order, and further ordered by the top-left corner in the diagonal order.

Assume the filling contains neither
(• ◦
◦ •

)
, nor the old pattern (either

(• ◦
◦ ◦

)
or(◦ ◦

◦ •

)
, depending on the direction of the bijection). The bijection will replace in-

stances of the old pattern by instances of the new pattern (whichever of
(◦ ◦
◦ •

)
or(• ◦

◦ ◦

)
is not the old pattern).

Repeat the following procedure until no instances of the old pattern remain:
(1) Let M be the first minor with the old pattern, in smallest-rectangle order.
(2) Replace M by the new pattern.

The algorithm terminates because each replacement moves some •, depending on
the direction of the bijection, strictly down and right, or strictly up and left. Only
finitely many such moves are possible. To check that the algorithm is the desired
bijection, one needs to verify (i) that a replacement cannot create an instance of(• ◦
◦ •

)
, and (ii) that a replacement cannot create an instance of the old pattern that

comes earlier in the smallest-rectangle order. To prove this, attempt to construct
a violation, and conclude that it is impossible by connectivity and

(• ◦
◦ •

)
-avoidance.

We omit the proof details due to space constraints.
It seems plausible, although we have not verified it, that the assumptions needed

for this bijection are strictly weaker than the union of top-left and bottom-right
CR-erasability, which are both required for the two pp’s recurrences to match up.

There is also an independent reason for equivalence between
(• ◦
◦ ◦

∣∣• ◦
◦ •

)
and

(◦ ◦
◦ •

∣∣• ◦
◦ •

)
.

The pattern pairs are mapped to each other both by transposition, and by reversing
the order of the rows and columns together. Therefore, the pattern pairs will be
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equivalent in shapes preserved by either transformation (180◦-rotation symmetry,
and upper-left to bottom-right reflection symmetry).

Empirically, every shape having this equivalence satisfies one of the above con-
ditions: symmetry, or a decomposition into 2× 2-components that are connected.

By rotating the patterns and shapes 90◦, we see that the analogous bijection
works for the pps

(◦ •
◦ ◦

∣∣◦ •
• ◦

)
and

(◦ ◦
• ◦

∣∣◦ •
• ◦

)
.

8. Empirical Results and Open Problems

8.1. When are patterns inequivalent? In the theorems above, we state whether
the result appears to be empirically tight. That is, whether we found any shapes
that do not satisfy the assumptions of the theorem, but have an equivalence between
the corresponding pattern pairs.

Each theorem was tested on a set of about 160 shapes. The data set includes
all 2× 2-connected 3× 3 examples, some Young diagrams, rectangles, skew shapes,
other shapes that are horizontally- or vertically- connected, a number of shapes with
no apparent regularities, and some shapes that were made up as tests of hypotheses,
or counterexamples. Nonetheless, it is a small and unrepresentative set, and claims
of empirical tightness should be taken with a grain of salt. We intend to check
them more systematically on all shapes up to 5 × 4, and in particular to see how
frequently sporadic coincidences occur. However, we do not have high hopes for
results that say when two pps are not equivalent.

On the other hand, it is easy to produce shapes so that no two pps are equivalent:

.

These two examples were found during unsystematic experiments. It may be in-
teresting to try to characterize the set of such shapes. How “regular” can they be?
Are they frequent? We conjecture that a large random shape with a sufficiently
high density of cells will almost always have this property.

Problem 8.1. Find, as a function of 0 ≤ λ ≤ 1, the fraction of n× n shapes with
λn2 cells, which have no equivalent pps.

8.2. Other equivalences. Of the 64·63
2 = 2016 possible equivalences, we have

(partially) described 156 — there are 12 pattern pairs, all connected through(◦ •
• ◦

∣∣• ◦
◦ •

)
. Many of the descriptions, especially the indirect ones, are not tight. Here

is an example of such a connection:

(11)
(◦ ◦
◦ ◦

∣∣◦ ◦
• ◦

)
↔
(◦ •
• ◦

∣∣• ◦
◦ •

)
↔
(• ◦
◦ ◦

∣∣◦ •
◦ ◦

)
.

In order for it to work, the shape must be top-right CR-erasable and bottom CR-
erasable. Requiring both pps to be equivalent to

(◦ •
• ◦

∣∣• ◦
◦ •

)
gives excessively strong

conditions for the relation between the two. For (11), this is true empirically —
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the equivalence holds in many shapes where
(◦ •
• ◦

∣∣• ◦
◦ •

)
differs from both:

, , etc.

The bijection in Section 7 is another example. We proved
(◦ •
• ◦

∣∣• •
• ◦

)
to be equivalent

to
(• ◦
◦ ◦

∣∣• ◦
◦ •

)
for a large class of shapes, in many of which

(◦ •
• ◦

∣∣• •
• ◦

)
is different from(◦ •

• ◦

∣∣• ◦
◦ •

)
. All the skew shapes in our data set fall in this category. Also, as mentioned

in Subsection 4.4, the assumptions for the
(◦ •
• ◦

∣∣• •
• ◦

)
↔
(◦ •
• ◦

∣∣• ◦
◦ •

)
equivalence (and its

3 rotations) need to be weakened.
Therefore, there is considerable room for improvement in the description of the

13 pattern pairs in this paper. Moreover, 51 of the pattern pairs are completely
untouched. For example, here are some equivalences that appear to hold for all
shapes whose 2 × 2-components are connected (the exact conditions are weaker,
and vary by pair): (• ◦

◦ ◦

∣∣• •
◦ ◦

)
↔
(◦ ◦
◦ •

∣∣◦ •
◦ •

)
,
(• ◦
◦ ◦

∣∣• ◦
• ◦

)
↔
(◦ ◦
◦ •

∣∣◦ ◦
• •

)
,(◦ •

◦ ◦

∣∣• •
◦ ◦

)
↔
(◦ ◦
• ◦

∣∣• ◦
• ◦

)
,
(◦ •
◦ ◦

∣∣◦ •
◦ •

)
↔
(◦ ◦
• ◦

∣∣◦ ◦
• •

)
.

These four symmetrical equivalences look similar to
(• ◦
◦ ◦

∣∣• ◦
◦ •

)
↔
(◦ ◦
◦ •

∣∣• ◦
◦ •

)
from Sec-

tion 7, but that bijection does not seem to generalize. Empirically, these 8 pps are
not equivalent to

(◦ •
• ◦

∣∣• ◦
◦ •

)
except in a handful of shapes with no clear regularity.

The recurrence analogous to Lemma 4.3 fails because rows or columns that we
would want to delete can be involved in forbidden patterns. Thus, a new idea is
needed — perhaps a modified recurrence. We believe that any bijection is likely to
be quite complex. There are many other coincidences, but the classes of shapes, in
which they happen, are either small or unclear, so we will not list them here.

8.3. Implications between equivalences. It may not be possible to obtain ac-
tual implications for the reasons discussed in Subsection 8.1. We can go from shape
properties to equivalence, but not from equivalence to shape properties. Nonethe-
less, the following holds empirically. If any equivalence in the first column of Table
1 on page 8 holds, then so do the other two in its row. The first four equivalences
in the second column “imply” the corresponding equivalences in the third column.
A little more formally, if we had the weakest possible conditions for all the equiv-
alences, modulo unsystematic coincidences, then conditions in the first column are
strictly stronger than those in the second, and those are strictly stronger than the
third. Again, this may be extremely difficult to prove because of the “unsystematic
coincidences” part.

Something more approachable is to catalog the various unions of the best known
conditions for equivalence, and to describe combinatorially each class of shapes in
which these unions are true. This would give a poset of shape classes, ordered by
inclusion, with a set of equivalences for each.

8.4. How to count the number of pattern-avoiding fillings? It may be desir-
able to know more than just the equivalences between pairs of pps. The recurrences
in this paper can be used to get a numeric answer in some circumstances, but there
are many more questions left unanswered:
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Problem 8.2. Given a set of pattern pairs, is it possible to compute the number
of the corresponding pafs in any shape in subexponential, or even polynomial time
(in the number of cells in the shape)?

Problem 8.3. Are there explicit formulas counting the number of specific pafs?
In specific shapes? (Kitaev et al. answer this for rectangular shapes in [3, 2])

Problem 8.4. Is there a good description of shapes, in which the number of certain
pafs is strictly less (greater) than that of another kind of pafs? That is, a theory
of pattern-ordering and not just of pattern-equivalence.
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