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1. A Historical Introduction

In 1813, Cauchy proved that all convex polyhedra are rigid, and it was widely
believed that the same held true for non-convex ones. A self-intersecting flexible
construction by Bricard in 1897 raised some doubts about the conjecture. However,
it was not until Connelly removed the self-intersections from Bricard’s construction
in 1977 that the rigidity conjecture was disproved.

It was observed that Connelly’s polyhedron, as well as the simpler subsequent
construction by Steffen, had constant volume as they flexed. Dennis Sullivan is
credited with this discovery. He built a model of a flexible polyhedron, blew smoke
into it, saw that none escaped as it flexed, and surmised that the same might be true
for all flexible polyhedra. The polyhedron was not behaving as a bellows might, so
Connelly dubbed Sullivan’s conjecture the “Bellows conjecture”. The name stuck.

The conjecture was proved in 1995 by Sabitov in a series of involved, but progres-
sively simpler papers. In 1996 Connelly invited Sabitov to visit Cornell. There, the
two, together with Walz (further CSW), produced an elegant proof of the conjecture
based on the theory of places.

That laid the original Bellows conjecture to rest. However, Connelly had concur-
rently formulated a stronger version: all flexed states of a polyhedron are scissor-
equivalent. His flexible polyhedron, as well as Steffen’s, satisfied this condition.
However, both are based on Bricard’s octahedron, whose symmetries cause the
Dehn invariant to remain constant. Therefore, it’s interesting to construct flexible
polyhedra unrelated to Bricard’s construction.

In 1995, before Sabitov’s work became known, V.A. Alexandrov published a
paper describing such a construction. His intent was to produce a counterexam-
ple to the Bellows conjecture. The polyhedron was based on the “frame”, a highly
symmetrical zero-volume self-intersecting polyhedron homeomorphic to a torus (de-
scribed below). He broke its symmetry by introducing variable-sized kinks into the
shape; however, this construction fared no better than Bricard’s. Both the volume
and the Dehn invariant stayed constant during flexing. While the Bellows conjec-
ture is settled, the strong version is not. So, the search for counterexamples, which
would likely have to be flexible polyhedra of novel constructions, needs to continue.

Another generalization of the Bellows conjecture is its n-dimensional analog. In
1997, CSW said they thought they knew how to prove it in 4 dimensions, but
were stuck for all higher n. Walz gave a talk about the 4-dimensional case at
the Canadian Mathematical Society meeting in December 1998, but there appears
to be no publications on the matter. The author is not aware of any flexible 4-
polytopes that would substantiate or disprove the conjecture. This paper attempts
to generalize Alexandrov’s frame construction to n dimensions, and thus provide
an example of a flexible 4-polytope.
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Figure 2.1. Flexible chimney: the top and bottom faces are missing.

2. Frame Construction and Properties

Before proceeding to the general construction, we give some low-dimensional
examples to familiarize the reader with the language needed for the general case.
The content of sections 2.1 and 2.2 is trivial, and might be skipped.

We will abbreviate 0, . . . 0, “zeros until the end of the vector”, as 0̄. To check the
flexibility of a polytope, we will examine the permissible positions of the vertices
of a combinatorial structure under some constraints on the vertex coordinates. To
exclude rigid motions, we will fix one of the faces in space. To this end, we fix
one of the vertices at zero, one of the incident edges in the line (x1, 0̄), a 2d-face
incident with this edge in the plane (x1, x2, 0̄), etc. Additionally, without loss of
generality, we’ll rescale the edge in (x1, 0̄) to have length 1.

2.1. Dimension 2: Parallelogram. The nicest 2-dimensional flexible polytope
is a parallelogram.

Fix one of the sides as 1 = (1, 0) vector from at the origin; then, a parallelogram
is completely specified by another vector a = (a1, a2), with a · a = |a|2 = C ≥ 0.
The points on the parallelogram are 0,1, a,1+a — the sums of all subsets of {1, a}.

Fix the C; then, the range of flexion of the parallelogram is given by the so-
lutions of a · a = C. These solutions form a one-dimensional family, provided
that some solution exists (always), and the Jacobian at this solution has full rank
([ 2a1 2a2 ] 6= 0 ⇒ a 6= (0, 0)). Note that when a = (1, 0), we get a line; we’ll
just consider it (and similar cases in what follows) to be a parallelogram of volume
0.

2.2. Dimension 3: Chimney. We can take a parallelogram and extend it to
three dimensions by translating it along a line segment a protruding in the third
dimension. A face of the resulting figure will result from translating the side of
a parallelogram. Let’s say that the fixed face is given by the parallelogram side
1 = (1, 0, 0) and the line segment a = (a1, a2, 0). Then, the second parallelogram
side is some b = (b1, b2, b3). The vertices of the chimney will be all sums of subsets
of {1, a, b}:

0,1, a,1 + a, b,1 + b, a + b,1 + a + b,

with the edges corresponding to the addition of exactly one new summand (e.g.
from a to a+ b). In this language, a face is specified by a starting point (say 1+ b),
and a pair of vertices such they don’t both come from the parallelogram (say {a, b}).
In this example, the vertices of the face are: 1 + b,1 + b + a,1 + a,1.
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Figure 2.2. Alexandrov’s frame, enclosing equal amounts of posi-
tive and negative volume. The four highlighted vectors parametrize
the construction.

This gives us the a chimney shape as in Figure 2.2. Deformations of the chimney
are restricted by the following equations:

a · a = C, b · b = D (edge lengths stay constant)

a · 1 = E, a · b = F (face angles stay constant)

So, we have 4 constraints and 5 variables: a1, a2, b1, b2, b3. If some solution exists
and the Jacobian has full rank for that solution, there is a one-dimensional family
of solutions specifying how the chimney flexes. We have a solution as long as the
edge lengths are all positive, and the cosine values from the two-edge dot products
are in [−1, 1]. The Jacobian looks like this:









2a1 2a2

2b1 2b2 2b3

1
b1 b2 a1 a2









∼









1
2a2

a1 a2

∗ 2b3









,

where the value of ∗ depends on whether b1 is zero. It’s clear that this has full rank
for a generic assignment of the variables.

2.3. Dimension 3: Frame. The frame, shown in Figure 2.3, is a torus made
from 4 chimneys. Alexandrov’s paper breaks the symmetry in this figure in an
attempt to create a shape with non-zero, non-constant volume. His symmetry-
breaking construction does not even have the limited success of Connelly’s crinkle:
the volume remains zero. The failure to produce positive volume is not trivial, and
results from requiring the desymmetrized shape to be flexible. However, this is
beyond the scope of this paper. It should be noted that the frame in Alexandrov’s
paper is based on a rhomb instead of a parallelogram, although that’s not necessary
for flexibility.
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The frame can be described in the language of the previous sections as follows.
We have two pairs of vectors: 1 = (1, 0, 0), a = (a1, a2, a3) and b = (b1, b2, 0), c =
(c1, c2, c3), where 1 and b describe the “fixed” face. As before, we take the vertices
to be all sums of subsets of these (for a total of 24 = 16), and the edges to be all

pairs of vertices differing in exactly one vector ( 24
·4

2 = 32 of them). There are 4
types of faces, corresponding to a shift by a vector from the first pair and a shift
by a vector from the second pair; every vertex participates in each available type

of face, and each face contains 4 vertices. Hence, the number of faces is 24
·4
4 = 16.

A frame is subject to the following 7 constraints:

a · a = C, b · b = D, (edge lengths stay constant)
c · c = E

a · b = F, a · c = G, (face angles stay constant)
b · 1 = H, c · 1 = I

,

and has 8 variables. Again, a solution exists provided the length constants are
positive, and the angle constants are valid: then, it’s very easy to check that the
construction is consistent. The Jacobian (with the ·1 rows/columns eliminated)
looks like this:





















2a1 2a2 2a3

2b1 2b2

2c1 2c2 2c3

1
1

b1 b2 a1 a2

c1 c2 a1 a2





















.

We apply the permutation 4 5 6 7 8 1 2 3 to the rows & columns of this matrix,
and row-reduce to get:





















1
1

a1 a2 b1 b2

a1 a2 c1 c2

2b1 2b2

2c1 2c2 2c3

2a1 2a2 2a3





















∼





















1
2b2

1
a2 c1 c2

2c3 ∗ ∗
b1 b2

∗ 2a3





















.

Here, ∗ may take different values depending on whether some variables are zero
or not. The matrix is full rank for almost all variable assignments; only a set of
measure zero is forbidden. Hence, the frame is flexible.

2.4. The n-Dimensional Frame.
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2.4.1. Vertices. Taking cue from the 3-dimensional frame, we construct the n-
dimensional frame. The idea is to translate an (n − 1)-dimensional frame along
a parallelogram (that’s how we got the 3-dimensional frame from the 2-dimensional
one). In this way, we get a frame of higher dimension with a copy of the lower-
dimensional frame in every corner of the new frame.

In the language of the previous sections, an n-dimensional frame is defined by
n−1 pairs of vectors (each additional pair making increasing the number of dimen-
sions):

(2.1)

1 = (1, 0̄), a1 = (a1,1, . . . a1,n)
a2 = (a2,1, a2,2, 0̄), a3 = (a3,1, . . . , a3,n)

a4 = (a4,1, a4,2, a4,3, 0̄) a5 = (a5,1, . . . , a5,n)
· · · · · ·

a2n−4 = (a2n−4,1, . . . , a2n−4,n−1, 0) a2n−3 = (a2n−3,1, . . . , a2n−3,n)

Here, the vectors 1, a2, a4, . . . , a2n−4 define the face of the polytope that we are
fixing in space.

Taking all sums of subsets, we get 22(n−1) vertices; generically, these are all
distinct. To see this, pick an arbitrarily large K; take some assignments of the
vectors, and rescale them all by a factor of 1.00 . . .001 (with the 1 is in position
K + 1).

Make tiny adjustments to the rescaled vectors so that ai1 all have finite decimal
expansions, with at most K digits after the decimal point. Starting at decimal
position K + 1, we put a 2(n− 1)-digit marker on all vectors. 1 has a 1 in position
K +1 (because of rescaling) and zeros elsewhere, ai has a position in K +1+ i and
zeros elsewhere. Now, for any vertex we can identify the corresponding subset by
looking at this marker, so all vertices are distinct. It’s clear that a similar procedure
can get us a dense set of points such that all vertices are distinct. By continuity
(small change in ai produces a small change in the vertex positions), it follows that
the vertices are distinct for almost all variable values.

2.4.2. Faces. This polytope has k-dimensional faces specified (not uniquely) by a
starting point, and a set of k vectors such that every vector comes from a different
pair in (2.1); call these proper k-sets. The face is given by vertices corresponding
to sums, which fix the remaining 2(n − 1) − k vectors as in the initial point, and
take all 2k possible subsets for the chosen k vectors.

A proper k-set specifies the shape of a face. The n-dimensional frame has
(

n−1
k

)

2k

k-dimensional face types. Every vertex is in a face of a given type exactly once,
each face has 2k vertices. Letting F be the number of faces, we get the following
equality (by counting the vertices with repetition):

22(n−1)

(

n − 1

k

)

2k = 2kF ⇒ F = 22(n−1)

(

n − 1

k

)

2.4.3. Polytope or Not? A polytope this is, since the n-dimensional frame is home-
omorphic to the n-dimensional torus. The homeomorphism in 2 dimensions is
trivial. Assuming we have a homeomorphism for the n − 1 dimensional frame, we
construct the n-dimensional homeomorphism as follows. To construct the n-frame,
we’re moving the (n − 1)-frame along a parallelogram. The parallelogram is in
some 2-plane, and the (n − 1)-frame is in a fixed orientation in some hyperplane
that intersects, but does not contain the parallelogram plane. As the (n− 1)-frame
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moves around the perimeter, it stays in a hyperplane parallel to the original, and
retains its original orientation.

We will continuously deform the initial parallelogram and frame to be, respec-
tively, an (n− 1)-torus and a circle. This corresponds to a continuous deformation
of the n-frame. Now, each point on the (n− 1)-torus T travels along its own circle,
all such circles having the same radii, and located in parallel 2-planes. However,
the centers of revolution themselves lie on another (n − 1)-torus, whereas, for a
torus we’d like to have them all lie on a line.

To rectify this, we keep the initial (n−1)-torus intact, and continuously alter the
circles along which its points travel. Pick a hyperline1 l perpendicular to the plane
of our circle of rotation (to avoid self-intersection, put l more than one diameter of
T away from T ). For every point p on the torus, we continuously move its center
of rotation to l, while staying in the plane of p’s original circle of rotation. At
the end of the transformation, we have a manifold generated by rotating a(n− 1)-
torus T around a hyperline lying in the hyperplane of T . Hence, the n-frame
is homeomorphic to an n-torus, and is a compact boundary-less piecewise linear
manifold – a polytope.

Incidentally, since our parallelogram is symmetric, and the orientation of the
generating (n − 1)-frame is constant throughout, we end up adding a volume ele-
ment, and on the reverse side of the parallelogram we add its negative counterpart.
Therefore, the volume of the n-frame is zero.

2.4.4. Flexibility. The n-dimensional frame has Vn = (n−1)n
2 − 1 + n(n − 1) =

3
2n(n − 1) − 1 variables, and must obey the following constraints:

The following edge lengths are constant:
a1 · a1, a2 · a2 . . . , a2n−3 · a2n−3

The face angles stay constant:
1 · a2, 1 · a3, 1 · a4, . . . , 1 · a2n−4 1 · a2n−3

a1 · a2, a1 · a3, a1 · a4, . . . , a1 · a2n−4, a1 · a2n−3

a2 · a4, . . . , a2 · a2n−4, a2 · a2n−3

a3 · a4, . . . , a3 · a2n−4, a3 · a2n−3

. . .
...

a2n−6 · a2n−4, a2n−6 · a2n−3

a2n−5 · a2n−4, a2n−5 · a2n−3

That’s a total of Cn = 4 · (n−2)(n−1)
2 + 2n − 3 = 2(n − 1)(n − 1) − 1 constraints.

For n = 2, 3, Vn − Cn = 1, and so the resulting frame is flexible as argued above.
In dimension 4, Vn−Cn = 0, making the system exactly determined. If the above

constraints are all independent (for our choice of constants), that implies that it
has at most a finite number of solutions. In all higher dimensions, the system is
overdetermined with Vn − Cn < 0.

A given choice of constants tells us the coordinates for the first face, so a2, . . . a2n−4

can be considered constant. That leaves us with

3

2
(n − 2)(n − 1) + n − 1 =

1

2
(3n − 4)(n − 1)

1An affine subspace of dimension n − 2, in case I just made this word up.
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constraints and n(n− 1) variables. Rename the remaining n− 1 vectors b1, . . . , bn.
Then, bi is involved in n − 2 linear constraints. We’ll assume that the constants
were chosen so that the fixed face has non-zero volume. In that case, the vectors
1, a2, a4, . . . , a2n−4 are linearly independent, and so the n − 2 linear constraints
force each bi into some fixed plane. Each such plane can be parametrized by some
2 variables ci = (ci1, ci2). On these remaining 2(n − 1) variables, we have

(n − 1)(n − 2)

2
+ n − 1 =

n(n − 1)

2
constraints, which are of the form ciAijcj = Cij , with Aij some constant n × n

change-of-variable matrix.
So, the flexibility of the frame in dimensions n ≥ 4 comes down to the inde-

pendence of the above constraints. There seems to be no reason 2 for this system
to have any degrees of freedom, so the n-dimensional frame for n ≥ 4 should not
be flexible. 3 Therefore, to the best of my knowledge, the problem of flexible
n-polytopes remains open.

2How do I rigorously argue this?
3In particular, I do not believe that any special choice of constants will make it flexible.


