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1. Introduction and Definitions

The �rst half of this paper is a very quick overview of the literature on the general
subject of sparse graphs and their spectra. The second part makes some headway
in �nding the lowest positive eigenvalue for trees of a given size (alternatively:
quantifying the decay of a sparse graph's limit spectrum near zero).

The paper builds on my Princeton University senior thesis. [1] Sections 3 and 5.3
were taken with a few changes from the thesis. Most of the other text was written
from scratch. Section 5 consists primarily of new results and ideas: Proposition
5.2, Corollary 5.5, Proposition 5.7, Corollary 5.8, and Corollary 5.9 did not exist
in the thesis.

1.1. Random graphs.

De�nition 1.1. An Erd®s-Rényi graph (further, E-R graph) with parameter p is
a random graph on n vertices labeled by elements of [n]. For any two vertices i, j,
the probability of an edge between them is p

n , independent of the other edges. The
ensemble of such graphs will be called G(n, p).

This object was introduced around 1960 in a series of papers by Paul Erd®s and
Alfréd Rényi. [2] They studied the random graphs in the limit n →∞, establishing
many of their essential properties for a range of values of p.

Here, it's helpful to note that in the limit, the G(n, p) model is equivalent to the
so-called G(n, m) model. In this model, we take n vertices, and select uniformly
at random a graph with m edges. Algorithmically, a graph can be drawn from
G(n, m) as follows: �rst, create a G(n, 0) graph with no edges. To get a i + 1-edge
graph from a G(n, i) graph, we add a random edge from the remaining

(
n
2

)
− i edges

to the graph. It's clear that the resulting graph is again, uniformly drawn from all
i + 1-edge graphs, and so is a G(n, i + 1) graph. This inductive construction of
G(n, m) gives an intuitive way of thinking about G(n, p) as p grows: we're just
adding new edges at random.

So, we'd like to know what happens to a given graph property as the graph
evolves by acquiring more and more edges. What follows is an informal summary
of E-R's results on the component composition of the graph. There are three basic
density regimes: p = o(1) as n → ∞, p constant in the limit, and p unbounded as
n →∞.

For p = o(1), almost all (in the probabilistic, not colloquial sense) vertices in

the graph come from components that are small trees. Speci�cally, for p
n < n

k−1
k−2 ,

almost no vertices come from trees of size k or larger (and trees of size k appear at
1
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that threshold). As p grows closer and closer to a constant, the graph changes by
acquiring progressively larger trees.

For p constant, trees of all sizes occur, with the following distribution. Let pn

be some function of n, and Tk be the number of components of G(n, npn) that are
trees on k vertices. (So, p = 1 corresponds to pn = 1

n .) Then, we have the following
result due to Barbour [3]:

Theorem 1.2. For �xed k ≥ 2, any n and pn, let

λn = ETk = nk kk−2

k!
pk−1

n (1− pn)nk(1 + O

(
1
n

, pn

)
)

σ2
n = Var Tk = λn

(
1 + λnk2(pn +

1
n

)
)

+ O (1)

Then ∃C(k), constant in n, such that,

sup
x∈<

∣∣∣∣P{Tk − λn

σn
≤ x}

∣∣∣∣ ≤ C(k)
σn

holds uniformly.

This theorem is quite general, and applies to the case p = o(1) and p unbounded
as well. Notice that k = 1 is missing. Barbour has a similar theorem which covers
k = 1, and holds for pn ∼ c

n . Note, in particular, that the expected number of trees
of size k decreases quite rapidly with k.

For p < 1, almost all vertices are on trees. At p = 1, this is still the case, but
there appears a giant component containing O(n

2
3 ) of the vertices. For p > 1,

the giant component contains cn of the vertices, but the remaining (1− c)n of the
vertices are still on trees.

As p grows, the graph becomes more and more connected, and the trees get
absobed into the giant component. When p becomes unbounded as n →∞, almost
all vertices are in the giant component. For pn > log n

n , almost every graph is
completely connected in the limit.

1.2. Spectrum considerations. This paper is focused on the adjacency spectrum
of graphs. That is, we take a graph (e.g. an E-R random graph as above), construct
its adjacency matrix, and consider its eigenvalues. They are all real, because an
adjacency matrix is real symmetric.

For E-R random graphs, we're interested in the limit spectrum � that is, what
distribution, if any, do the eigenvalues of G(n, p) approach as n → ∞? The spec-
trum of a multi-component graph is the union of the spectra of its components.
Hence, for p < 1 (including p = o(1)), the spectrum is the union of tree spectra,
weighed according to Theorem 1.2. So, if the limit spectrum exists (more on that
in Section 2), then for p = o(1) it can be computed explicitly (just calculate the
spectrum of all trees up to the desired size, and add them together, normalized by
frequency of occurrence). For p = o(1), it consists of a �nite number of δ-functions,
and hence is bounded.

For p constant, p < 1, the spectrum can be approximated arbitrarily well by
computing spectra of smaller trees, and weighing them accordingly. The decay of
ETk is slowest for for p = 1, and even in that case trees of size ≤ 50 account for
roughly 88% of the spectrum density (calculated from Theorem 1.2). The limit



SOME RESULTS CONCERNING SPARSE ERD�S-RÉNYI GRAPH ADJACENCY SPECTRA 3

spectrum is unbounded: for example, a non-zero fraction of the components are k-
stars (for any k), which have eigenvalues ±

√
k, 0. The asymptotics of the fraction of

the limit spectrum above λ were determined by Rodgers and Bray [4] using physical
methods. They determined that the probability of a tail eigenvalue (above λ, or

below −λ) is ∼
(

λ2

ep

)−λ2

. Unfortunately, their method is likely not mathematically

rigorous. In my senior thesis, I an upper bound on the moments of the spectrum to

show that the asymptotic decay is faster than
(

λ2

Ce

)− λ2
Ce

, for an explicit constant

depending on p. I also proved a lower bound on the moments of the spectrum,
from which it should be straightforward to derive an analogous lower bound for the
decay.

For p > 1, a fraction of the spectrum is still accounted for by trees. This
tree spectrum we can compute approximately, as for p < 1, and all the observa-
tions above apply to it. As far as the giant component's spectrum, Semerjian and
Cugliandolo [8] derived physical approximations that are empirically quite good for
large constant p. For p unbounded, Rodgers and Bray proved in the same paper [4]
that the limiting spectrum, properly normalized, approaches the Wigner semicircle.
For references on Wigner's semicircle law see [11]. However, it's not obvious what
rigorous techniques can be applied to the giant component's spectrum, in the con-
stant p regime. Numerical estimates for its spectrum produce a very complicated
picture for small n > 1. For this reason, the rest of the paper concerns primarily
the tree spectrum. To do this, it's enough to understand the spectra of �nite trees.
This lends itself, at least partially, to combinatorial approaches.

2. Existence of the Spectral Limit

In the introduction, I talk about a limiting spectrum, although it isn't obvious
that one exists. For instance, in the unbounded case, like in the standard Wigner
semicircle law, normalization is required to obtain a limiting spectrum. This section
shows that for constant p this is not the case, and the limit spectrum does exist.

In my senior thesis [1], I analyze the limits Mk as n →∞ of the moments Mk,n

of a G(n, p) graph. I show that the limits of these moments exist, are �nite, and
give upper and lower bounds. I also show that, in the limit, the variance of Mk is
zero (hence, a large enough matrix approximates the spectral limit). See A094149
in Sloane's encyclopedia [5] for the �rst few Mk.

To show that the spectral limit exists, all we need is that the Mk exist and are

�nite, and an upper bound (which, from [1], is M2k ≤ 4kAk

(k+1)
√

πk
, where Ak is the

k-th Bell number). Then, we apply Carleman's criterion for the moment problem
(see [10]): a distribution with the given moments exists and is unique if

∞∑
k=1

M
− 1

2k

2k = ∞.

Using a rough asymptotic bound for the Bell numbers, we have M2k ≤ 4kkk. This
gives

∞∑
k=1

M
− 1

2k

2k ≥
∞∑

k=1

1√
4k

= ∞,

so the limiting distribution does exist.
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As a side note, I also proved that M2k+1 = 0, so the spectral limit has an
even symmetry about the origin. The tree spectrum alone also has even symmetry.
That's because trees are bipartite graphs; the adjacency matrix of a bipartite graph
can be written in block form thus:(

0 A
AT 0

)
,

which means that if

( −→x
−→y

)
,with the same block boundaries, is an eigenvector

with eigenvalue λ, then so is

( −→x
−−→y

)
, with eigenvalue −λ. Hence, the giant

component's spectrum is even as well.

3. The δ−function at Zero

Outside of the p = o(1) regime, I do not know how to calculate the exact density

of a generic δ-function in the tree spectrum (e.g. for λ = 1+
√

5
2 ). However, the

height of the zero δ-function can be computed thanks to the following clever result.
In [7], Bauer and Golinelli derive an explicit formula, a generating function and

an asymptotic approximation for zk � the number of zero eigenvalues (with mul-
tiplicity) in all trees of size k. Their approach uses two methods. First, they
characterize the number of zero eigenvalues Z(F ) in a given forest F using a spe-
cialization of the recursion in 5.1. Then, they use this characterization to cleverly
rewrite Z(F ) as a sum of a simple quantity over induced subtrees of the forest.
Armed with that identity, the rest of the paper uses standard techniques from
enumerative combinatorics to produce its results.

According to this paper, the expected multiplicity of the zero eigenvalue in a

tree of size k is EZk = (2x∗ − 1)k + x2
∗(x∗+2)
(x∗+1)3 + O

(
1
k

)
. The expected number of

tree components of size k in G(n, p
n ) is nkk−2pk−1e−kp

k! . So, the asymptotic (in k)

contribution of trees of size k to the δ-function at zero is (2x∗ − 1)kk−1pk−1e−kp

k! +
x2
∗(x∗+2)
(x∗+1)3 + O

(
1
k

)
. Using the weighting from Theorem 1.2, that yields the exact

density of the zero δ-function.

4. Numerics

To give some context for the discussion that follows, here are some pictures from
simulations.

The pictures of random 800-vertex graph spectra are a reasonable re�ection of
the spectral limit in these various regimes. For p = 0.5 and p = 1.0 we have pure
tree spectra. Observe the rapid decline in density near zero. The spectrum of all
trees of size 20 illustrates the source of this decay. The δ-functions comprising the
spectrum of 20-vertex trees are packed quite tightly, except for a large gap near
zero. This gap closes, slowly, as the trees get bigger, but big trees contribute very
little of a sparse graph's spectrum. Of course, there is a similar root repulsion
phenomenon going on around every other δ-function in the spectrum, but those are
less appealing because:

(1) The repulsion is much weaker.



SOME RESULTS CONCERNING SPARSE ERD�S-RÉNYI GRAPH ADJACENCY SPECTRA 5

Figure 1. A histogram of all eigenvalues of 1100 sparse random
graphs with parameter p = 0.5 and 800 vertices; the y axis is the
natural log of the eigenvalue count plus 1.

Figure 2. A histogram of all eigenvalues of 1100 sparse random
graphs with parameter p = 1.0 and 800 vertices; the y axis is the
natural log of the eigenvalue count plus 1.

(2) The largest positive eigenvalue of graphs, a well-studied object [6], speci-
�es the fastest growth mode for a vector being acted on by the adjacency
operator. On the other hand, the lowest positive eigenvalue speci�es the
fastest decay mode. But, practically nothing is known about it.

(3) Understanding the root repulsion rate generically (to handle e.g. ±1,±
√

2,
±
√

3, . . . ) is likely much harder than understanding the special case of zero.
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Figure 3. A histogram of all eigenvalues of 1100 sparse random
graphs with parameter p = 1.5 and 800 vertices; the y axis is the
natural log of the eigenvalue count plus 1.

Figure 4. A histogram of all eigenvalues of trees on 20 vertices;
the y axis is the natural log of the eigenvalue count plus 1.

5. Decay near Zero

From numerical experiments, it appears that the probability of an eigenvalue
falling on a non-zero value near zero is quite low (see, e.g., Figure 1 on page 5).
We'd like to compute for the limiting spectrum an upper bound on pA = P{0 <
λ < A} = 1

2P{−A < λ < A, λ 6= 0} as A → 0+. We'll use the following idea to
produce an estimate. There are �nitely many trees of size ≤ k, and so they have

a minimal positive eigenvalue λk,min. Moreover, a positive fraction Wk =
∑k

i=1 Ti

of the whole spectrum comes from those trees. So, pλk,min < 1−Wk. We know the
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behavior of Wk, so we only need to �nd a lower bound for λk,min to produce an
upper bound for pA.

There's a very crude, but straightforward way to estimate λk,min. Namely: all
eigenvalues of trees of size ≤ k are roots of integer polynomials of degree ≤ k
with bounded coe�cients. The coe�cients are bounded because we're taking the
characteristic polynomial of a zero-one k × k matrix. Thus, any coe�cient is at
most k!.

Given these two constraints, the polynomial with a root closest to zero is 1 −
k!(x + x2 + · · · + xk). To see this, consider another polynomial p(x). If p(0) = 0,
then we can divide through by x, and e�ectively reduce the maximum allowed
degree. Thus, we may assume p(0) 6= 0. Multiplying by −1, and re�ecting around
the y axis if necessary, we may assume that p(0) > 0 and that the minimum root
is positive. To have a low root, the function must get down to zero as quickly as
possible. Setting the constant term to 1 always helps, as does setting each of the
other coe�cients to −n!.

So, we get

x + x2 + · · ·+ xk =
1
k!

Rather than solve the above polynomial, observe that the right-hand side is ≤ 1
because k ≥ 1, and so the left-hand side is always smaller than kx. Consequently,
the polynomial's smallest positive root is ≥ 1

k!k . This is very far from the truth:
experimentally, up to k = 25, the lowest positive eigenvalue (LPE) is roughly
inversely proportional to k. I took a lot of shortcuts in the above calculations, but
the fundamental problem is the use of a single upper bound for all coe�cients.

The solution should lie in exploiting the fact that we're dealing with a tree's
adjacency matrix. Below, I present some facts that could be helpful in �nding the
exact LPE for trees of size k.

The rest of this section contains a collection of facts that should be useful in
proving the following conjecture:

Conjecture 5.1. The LPE on trees of size 2k occurs on the 2k-path.
Bonus: The LPE on trees of size 2k+1 occurs on the forked 2k-path (for k = 4,

it looks like this: −−− <).

5.1. Coe�cients of a tree's characteristic polynomial. The �rst observation
is that one can easily compute the characteristic polynomial of trees in a recursive
way. The characteristic polynomial is the following kind of determinant:∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1 0 . . . 0

1 −x
...

0
. . .

...
. . .

...
0 . . . . . . −x

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where the order of the vertices was chosen to make the �rst row/column a leaf, and
the second � the leaf's neighbor. Now, we can do row expansion along the �rst row.
Pictorially speaking, we get:
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x

T’’T’

The �rst term is clear: it's just the principal minor we get when we expand on the
the (1, 1)-th element. For the second term, we expand along the (1, 2)-th element,
which leaves a single 1 in the �rst column. We then expand by this 1 (formerly, the
(2, 1)-th element) to get the principal minor with the �rst two elements removed.

With this, one can compute the polynomials for trees of up to, say, size 8, by
hand. This is enough to notice the following pattern:

Proposition 5.2. The characteristic polynomial of a k-vertex tree has the form

(−λ)k−a1(−λ)k−2 +a2(−λ)k−4−a2(−λ)k−6 + · · ·+(−1)b
k
2 cab k

2 c(−λ)k mod 2 =

=
b k

2 c∑
i=0

ai(−1)k−iλk−2i,

where ai is the number of matchings of size i in the tree (and a0 = 1).

Proof. We can just work by induction, using the rule above. For the base case,
it's easy to see that the 1-vertex tree has characteristic polynomial −λ, and the
2-vertex tree has characteristic polynomial (−λ)2 + (−λ). Now, take a tree, and
delete its leaf as in our recursive rule. The matchings in the original tree are of two
types: there are some which contain the leaf's edge, and some that don't.

Ones that do, do not contain any of the edges coming out of the leaf's neighbor
either, so such matchings correspond to the matchings of T ′′, the tree with both
the leaf and its neighbor deleted (the right-hand term in the recursion). Let f ′′(λ)
be the characteristic polynomial of T ′′; by induction, its (k− 2)− 2ith degree term
coe�cient is the number of i-sized matchings in the subgraph. These correspond to
(i + 1)-sized matchings in T . The corresponding monomial's degree is the same in
T : k−2(i+1) = (k−2)−2i, but the sign adjustment is di�erent: (−1)k−2−i versus
(−1)k−(i+1). Hence, the matchings in T containing our leaf's edge are enumerated
by −f ′′(λ).

Similarly, let's work with matchings that don't contain the leaf's edge. These
may contain any of the remaining edges, so they correspond to i-sized matchings
of T ′. Let f ′(λ) be its characteristic polynomial. Again, by induction, the (k −
1) − 2ith degree term coe�cient is the number of i-sized matchings, while the i-
sized matching terms in f(λ) have degree k − 2i. The corresponding sign in f ′ is
(−1)k−1−i, but (−1)k−i in f . Hence, the matchings that don't contain our leaf's
edge are enumerated by −λf ′(λ).

So, we get that f(λ) = −λf ′(λ) − f ′′(λ), counts the number of matchings in T
as claimed. �

Here are some useful consequences:

Corollary 5.3. If the multiplicity of the zero eigenvalue is j, then k−j
2 is the size

of the largest matching in the tree.

Corollary 5.4. For k even, a k
2
is either 0 or 1.
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Proof. In other words, there's at most one full matching. If a matching exists, start
at a leaf, it is matched uniquely. Delete the leaf and win by induction. �

Corollary 5.5. The maximal ai is achieved for the k-path. Hence, the maximal
ai =

(
k−i

i

)
.

Proof. Expand the claim to include forests on k vertices as well. We'll work by
induction on the number of vertices k; the base case k = 1 is obvious. Let's
compare the number of matchings of size i between the k-path and another tree.
To do this, pick a leaf in each. In each tree, there are matchings that include this
edge, and matchings that do not. To count those that do, we we delete the edge
and its two vertices, and count (i−1)-matchings in what remains. The k-path turns
into a (k − 2)-path, while the other tree turns into some (k − 2)-forest. To count
those matchings that don't contain the edge, we count i-matchings after deleting
the leaf and the edge. The path becomes a (k − 1)-path, and the forest � some
other forest. In both cases, by induction, the number of matchings of the path is
at least that of the forest, which proves the claim.

The number of i-matchings in the k-path is just
(
k−i

i

)
, via the obvious bijection.

�

5.2. Su�cient to compute λk,min for k even. The conjecture for the odd case is
marked as �Bonus� above, because it turns out that λ2k+1,min > λ2k,min. Therefore,
our bound on the decay rate near zero is speci�ed entirely by even trees k. I can
prove this fact without proving the conjecture.

For this, I need the following eigenvalue interlacing theorem, due to Cauchy (see,
e.g. [9] for a proof).

Theorem 5.6 (Cauchy's Interlacing Theorem). If A is a Hermitian matrix with
eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, and A′ is any n− 1× n− 1 principal minor with
eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µn−1, then

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ λ3 ≤ · · · ≤ µn−1 ≤ λn.

Proposition 5.7. If the tree T of size k > 1 has LPE λT and at least one zero
eigenvalue, there exists a tree T ′ of size k − 1 with LPE λT ′ ≤ λT .

Proof. Consider a tree T on k vertices with i zero eigenvalues. Then, it has a
matching of size k−i

2 ; in particular, there is at least one vertex not included in the
matching. Suppose, for the moment, that this vertex is a leaf. We will delete this
vertex to get a graph T ′ on k−1 vertices which still has a matching of size k−i

2 . Its
matrix will be a principal minor, so the eigenvalues of T ′ interlace. Let's suppose
the LPE of T is a; then, interlacing gives us b, an eigenvalue of T ′, like this:

· · · ≤ −a ≤ −b ≤ 0 ≤ · · · ≤ 0 ≤ b ≤ a ≤ . . .

In particular, b 6= 0 by Corollary 5.3. Thus, the LPE of T ′ is at most that of T .
Above, we assumed that the vertex being deleted is a leaf. There are two way to

deal with this. One way is to drop the assumption, and potentially end up with a
forest. The spectrum of a forest is the union of its components' spectra, so its LPE
comes from a tree of substantially smaller size (slight modi�cation to the claim).
It's not hard to check that all the proofs in this section carry through for forests as
well as trees.

The other way is to �nd a matching with a missing leaf. To do that, suppose that
only non-leaf vertices are excluded. Look at the path from an unmatched vertex
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to a �xed leaf. If the rest of the path is not completely matched, we'll consider the
last unmatched vertex instead of the current one. We can then invert the matching:
(− = − = − =) ⇒ (= − = − = −). The result remains is a matching because
the initial vertex was not in the matching. This shows that there exists a matching
with an unmatched leaf, and concludes the proof. �

There are two nice corollaries of this result. One was already stated:

Corollary 5.8. For all k ≥ 1, λ2k+1,min ≥ λ2k,min.

Proof. By symmetry of a tree's spectrum (or because a matching covers an even
number of vertices), every odd T has a zero eigenvalue. Proposition 5.7 tells us
that every odd T is beaten by a smaller even tree, and the result follows. �

Furthermore, it follows that it's enough to prove Conjecture 5.1 for a subset of
even trees.

Corollary 5.9. If the 2k-path has the LPE among all 2k trees with full matchings
(of size k, that is), then Conjecture 5.1 holds.

Proof. Start with a tree T of size 2k. Since it's not full-matching, it has a zero eigen-
value. Apply Proposition 5.7 to get T ′ of size 2k−1 (which has a zero eigenvalue by
oddness), so apply Proposition 5.7 again to get T ′′ of size 2(k − 1). If the result is
a full-matching tree � stop, otherwise repeat these two steps, until a full-matching
2(k − i)-tree T (2i) is obtained. Since the 2-tree has a full matching, the procedure
does stop eventually. Proposition 5.7 says that LPE

(
T (2i)

)
≤ LPE

(
T (2i−1)

)
≤

· · · ≤ LPE (T ). Moreover, if we denote the l-path by Pl, LPE
(
P2(k−i)

)
≤ LPE

(
T (2i)

)
,

and, by Proposition 5.10, LPE (P2k) < LPE
(
P2(k−i)

)
. It follows that LPE (P2k) <

LPE (T ), as desired. �

This characterization may be helpful, for the following heuristic reason. For λ
very small, we can approximate the characteristic polynomial by a − bλ, because
all higher powers of λ become negligibly small. Since the coe�cients of the higher
powers are quite high, this isn't actually the case. However, the higher powers are
sign-alternating, and we might assume that they cancel out to something small.
So, assuming that a linear approximation makes sense, the LPE of a tree is just a

b .
By Corollary 5.4, a = 1 for all fully-matched trees. By Corollary 5.5, b is maximal
for the path. Hence, the LPE of all fully-matched trees should occur on the path.

To make the above heuristic argument work, we'd need rather tight bounds on
the e�ects of higher-order terms. So far, I haven't been able to do it. This may not
even be a good approach.

5.3. Eigenvalues of the path and forked path. Although it's not proved that
the LPE occurs on paths or forked paths, it still makes sense to calculate their
eigenvalues. Corollary 5.5 suggests that the characteristic polynomial of the path is
closely related to the Chebyshev polynomial. Indeed, its roots have the same form
and are quite easy to calculate.

Proposition 5.10. The 2n-path has eigenvalues: ±2 cos( πk
2n+1 ), k = 1 . . . n. Its

LPE is 2 cos( πn
2n+1 ).

Proof. Let b1, . . . , b2n be an eigenfunction of the eigenvalue λ for the 2n-path. Then,
λbk−1 = bk + bk−2 with the constraint that b2 = λb1 and b2n−1 = λb2n.
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Suppose λ = 0; then, b2 = 0, so 0 · b3 = b2 + b4 ⇒ b4 = 0, . . . , b2n = 0. But,
then b2n−1 = 0 as well, and, propagating backwards: 0 · b2n−2 = b2n−3 + b2n−1 ⇒
b2n−3 = 0, . . . , b1 = 0. So, 0 is not an eigenvalue. We also want to show that b1 6= 0.
Suppose otherwise; then b2 = 0, so λ · 0 = 0 + b3 ⇒ b3 = 0, etc. Thus, we can
renormalize all our eigenfunctions to have b1 = 1, and b2 = λ.

Finally, suppose λ = 2; then b2 = 2, 2 · 2 = 1 + b3 ⇒ b3 = 3; inductively,
2 · (i− 1) = (i− 2) + bi ⇒ bi = i. But, then b2n−1 = 2 · b2n ⇒ 2n− 1− 4n = 0 ⇒
n = − 1

2 , which is absurd. Analogously, if λ = −2, bi = i(−1)i+1, so we get n = 1
6 .

Now, we solve the recursion relation bk − λbk−1 + bk−2 = 0. The corresponding
polynomial equation x2 − λx + 1 = 0 has roots

x1 =
λ +

√
λ2 − 4
2

, x2 =
λ−

√
λ2 − 4
2

.

Consequently, the general solution to the recurrence is bk = c1x
k
1 + c2x

k
2 , and in

particular c1x1 + c2x2 = 1, c1x
2
1 + c2x

2
2 = λ. Writing these out, we get:

(c1 + c2)λ + (c1 − c2)
√

λ2 − 4 = 2

c1(λ2 + 2λ
√

λ2 − 4 + λ2 − 4) + c2(λ2 − 2λ
√

λ2 − 4 + λ2 − 4) = 4λ

⇒ 2λ
(
(c1 + c2)λ + (c1 − c2)

√
λ2 − 4

)
− 4(c1 + c2) = 4λ

Simplifying, we get c1 = −c2 = −c. We must also have λc(x2n
1 − x2n

2 ) = λb2n =
b2n+1 = c(x2n−1

1 −x2n−1
2 ); rewriting, we have x2n−1

1 (λx1−1)−x2n−1
2 (λx2−1) = 0.

Recall that x1 + x2 = λ, and x1x2 = 1. We can then write λx1 − 1 = (x1 +
x2)x1 − 1 = x2

1 + x1x2 − 1 = x2
1, and the same for x2. The �nal constraint is

x2n+1
1 + x2n+1

2 = 0, which is equivalent to x2 = γx1, where γ is a 2n + 1st root of
unity (excluding 1, which would lead to x1 = x2 = 0, which is impossible). Also,
x1x2 = x2

1γ = 1 ⇒ x2
1 = γ2n. So, x1 = ±γn and x2 = ±γn+1. This gives us all the

eigenvalues: λ = ±(γ + γ) = 2 Re γ = ±2 cos( πk
2n+1 ), for k = 1..n. Cosine is closest

to zero near π
2 , so we want k

2n+1 ≈
1
2 ; it follows that the LPE is 2 cos( πn

2n+1 ). �

The following can be proved by a more tedious calculation.

Proposition 5.11. A forked path (− · · ·− <) with 2n+1 vertices has eigenvalues:

0,±2 cos(π(2k−1)
4n ), k = 1 . . . n. Its LPE is 2 cos(π(2n−1)

4n ).
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