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Abstract. We begin by brie�y reviewing the essential results about

sparse random graphs. We work primarily in the random graph model

G(n, α
n
), with α constant. However, the main results of this paper gen-

eralize to sparse matrices with appropriate restrictions on the entries'

distribution.

Let the ensemble of sparse matrices Sn be random graphs G(n, α
n
)

endowed with independent random weights ξ, such that all moments of

ξ are �nite. Then, the moments of the spectrum of Sn are E Mn,k =

E 1
n

Tr Ak, where A ∈ Sn. We show that Mk = limn→∞Mn,k exist and

are �nite for all k, and that these moments determine a unique spectral

distribution λ. Moreover, for almost every sequence An ∈ Sn, the spec-

tral distribution of An converges weakly to λ as n → ∞. Additionally,

M2k+1 = 0, and the spectrum of Sn doesn't depend on the odd moments

of ξ.

For matrices with bounded ξ, we show that M2k lie asymptotically

betwen ck
1Ak and ck

2Ak, where Ak are the Bell numbers, and c1, c2 are

constants depending on α and on the distribution of ξ. In the critical

case ξ = 1, α = 1, we get c1 = 1, c2 = 4; we also conjecture an

improvement. The sequence M2k for the critical case was registered as

A094149 in Sloane's On-line Encyclopedia of Integer Sequences.

We present a number of numerical results, most signi�cantly a recon-

struction of the discrete part of the spectrum based on tree enumeration.

We present a clear explanation of the elegant Li-Ruskey tree generation

algorithm, to compensate for the dense presentation of the original pa-

per. For our numerical calculations, we discuss and use a di�erent tree

generation algorithm with some original features, i.e. the ability to count

the automorphism group sizes of the trees at negligible cost.

Based on the numerical work, we make a number of observations

and conjectures. The most important one is that the lowest positive

eigenvalue over all trees on 2k vertices is 2 cos( πk
2k+1

), over trees on 2k+1

vertices it is 2 cos(π(2k−1)
4k

). We present some lemmas and hypotheses

that may be of use in proving the statement. The signi�cance of the

lowest positive eigenvalue lies in quantifying the �gap� around 0 in the

spectrum of random graphs with α ≤ 1. We conclude with a list of

several interesting open questions.
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1. Definitions and Outline

De�nition 1.1. A sparse matrix (occasionally abbreviated s.m.) is an n×n

random symmetric matrix with independent entries ai,j , 1 ≤ i ≤ j ≤ n. ai,j

is ξi,j with probability α
n (α > 0), and 0 otherwise. We assume that ξi,j are

identically distributed, independent random variables with �nite moments,

and that their distribution does not depend on n. The ensemble of such

matrices be called Sn.

We will distinguish two special types of sparse matrices:

De�nition 1.2. A sparse graph (s.g.) is a sparse matrix with ξi,j ≡ 1.
Although we place no restrictions on the diagonal elements (loops in the

graph), we shall see that these make no contribution to the spectrum, and

can be neglected. For n �xed, we call the ensemble Gn; the dependence on

the parameter α is always implicit.

De�nition 1.3. A bounded sparse matrix (b.s.m.) has ξ with a bounded

distribution (its moments grow at most exponentially). This ensemble is

denoted Bn.

We would like to characterize the limiting (as n →∞) spectral density of

sparse matrices for various values of α, and for the three classes of matrices.

Sn ⊃ Bn ⊃ Gn, we will prove our results for as general an ensemble as we

can.

This paper has four main sections. �2 discusses the history of the problem,

summarizes previous work, and presents the results most important for the

the rest of the paper. �3 answers basic questions about the moments of

the limiting spectrum of all three types of sparse matrices. �4 describes

the computational work done while exploring this problem, and suggests a

number of questions. �5 discusses the part of the spectrum near 0.

2. Introduction

Sparse graphs and matrices have wide-ranging applications in mathemat-

ics and physics. They are used to model the energy levels of nuclei and to

represent spin systems. They also come up in the modeling of networks;

the spectra have been used to analyze the structure and reliability of these

systems. Random matrix theory has connections with a plethora of other
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subjects1 and is somewhat older than the study of sparse systems speci�-

cally. The latter �eld originated in 1960, when Erdös and Rényi introduced

the random graph model G(n, pn) � the graph on n vertices, with probabil-

ity pn of each given edge (total of
(
n
2

)
) being put into the graph; the choices

are made independently (often the equivalent model G(n, Mn) is used: all

graphs with M edges are equiprobable). Our formulation of the problem in

�1 generalizes the case pn = α
n in the sense that we allow the edges to be

weighted.

Erdös and Rényi (E-R) presented most of their classical results in one

paper, [1]. In the following years, some of their results were extended, some

estimates were improved or corrected, but the fundamental understanding of

sparse random graphs was provided by this seminal paper. We follow their

paper, sometimes giving extensions or modern formulations as in Bollobás

[7]. E-R took n large, and studied what happened to the graph as pn (or Mn)

grew over time. In other words, the graph evolves by getting more and more

new edges. It is natural to ask at every point in the evolution of G: how many

connected components are there in the graph? what are the types of the

connected components? how many components of each type are there? what

is the probability of seeing a speci�c graph as a component or subgraph? E-R

discovered that the evolution of the graph proceeds in essentially 4 distinct

stages, in which some properties of the graph are substantially di�erent.

The �rst stage is when pn = o
(

1
n

)
; the present paper does not deal with

this regime, as it is quite boring. Erdös and Rényi found that almost every

graph (in the limit n → ∞) consists of tree components. They determined

threshold functions for the appearance of tree subgraphs of a given size size,

and showed that the number of such trees (if pn majorizes the threshold

function) follows a Poisson distribution. It turns out that a.e. subgraph,

which is a tree of the size in question, is in fact a component; the threshold

for the appearance of trees of size k is O
(
n

k−1
k−2

)
.

In addition to trees, E-R calculated the threshold functions for some other

simple types of subgraphs: complete, cycles, connected, etc. Bollobás [7]

presents a considerably more general treatment of subgraph threshold func-

tions, giving tools to �nd the threshold function of an arbitrary subgraph.

1One of the most exciting connections at this time is with the distribution of the zeros of
the Riemann ζ function. See, for instance, M.L. Mehta, �Random Matrices� for a brief
exposition.
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We should note that non-tree components are essentially irrelevant to spec-

tral problems: the fraction of vertices on these (we're disregarding the gi-

ant component) is o (1) as n → ∞. All of Bollobás's threshold function

proofs are based on estimating the rth factorial moments of the Tk; the

rth factorial moment Er Tk is de�ned as E(Tk)r =
∑

i(i)rP {Tk = i}, where
(x)r = x(x−1)(x−2) . . . (x−r+1) = x!

r! . So, in the event that Tk = i, we are

counting (i)r, which is the number of distinct, ordered r-tuples of trees of size

k, given that there are i trees. So, the r-th factorial moment produces the

expectation of the number of such r-tuples. The factorial moments are im-

portant because the convergence of every rth factorial moment to λr implies

weak convergence to the Poisson distribution with that parameter. (This

is proved in Bollobás [7] using an elegant application of inclusion-exclusion)

The factorial moments for a subgraph X with automorphism group size a

converge to the expected number of ordered r-tuples of vertex-disjoint

copies of X, which is

(1) E′r(X) =
(

n

k

)(
n− k

k

)
· · ·
(

n− (r − 1)k
k

)(
k!
a

)r

prl (1 + O (rp)) ,

where the binomials signify the number of ways of picking the vertices of

each graph in the r-tuple, the next factor adjusts for the number of ways one

can select di�erent edges to produce graphs isomorphic to X, the last factor

gives the probability that all those edges are present. This quantity is ∼ λr,

with λ depending only on X. Showing convergence of E′r(X) to Er(X) is

quite simple in the case of trees.

One result that holds in the regime pn = o
(

1
n

)
applies in two of the

others as well, so we state it in full. While E-R proved the �rst version of

this theorem, they did not estimate the rate of convergence, and used a less

precise asymptotic for the variance. The following, stronger statement is due

to Barbour (1982) [2]. Consider Tk, the number of components of G(n, pn)
that are trees on k vertices. Then,

Theorem 2.1. For �xed k ≥ 2, any n and pn, let

λn = ETk = nk kk−2

k!
pk−1

n (1− pn)nk(1 + O

(
1
n

, pn

)
σ2

n = Var Tk = λn

(
1 + λnk2(pn +

1
n

)
)

+ O (1)
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Then ∃C(k), constant in n, such that,

sup
x∈<

∣∣∣∣P {Tk − λn

σn
≤ x

}∣∣∣∣ ≤ C(k)
σn

holds uniformly.

As for the case k = 1, Barbour has an similar result that is valid when

pn ∼ c
n . E-R's result (whether k = 1 or not) is without estimates on the con-

vergence rate, and holds ∀k whenever λn →∞ as n →∞. For the purposes

of our paper, the exact rate of convergence is immaterial. Barbour's proof

involves a complicated analytic technique to achieve the rate of convergence

of C
σn
. E-R's proof is much simpler; they directly estimate the moments of

the distribution, using the fact that Tk is the sum of an expression analogous

to (1) with r = 1 over all trees of size k. After some manipulations, using

the properties of Stirling numbers of the second kind, the moments turn out

to be normalized moments of a Poisson distribution. The moments, due to

their normalization, converge to those of the Gaussian, which completes the

proof.

The second regime E-R studied is that of pn = α
n with α < 1. Then, the

expected fraction of vertices on tree components (which can be calculated

very easily using Theorem 2.1; we have a derivation in �4.3) remains 1, and

a.e. large enough graph approximates it. However, there is now a non-trivial

number of unicyclic components as well; they follow a Poisson distribution

with a �nite parameter independent of n. Almost every graph consists only

of trees and unicyclic components, the largest trees (which are the largest

components) are of size O
(

1
1−α log n

)
. The number of components, nor-

malized by 1
n , for a.e. large enough graph approximates 1 − α

2 . This is the

so-called sub-critical regime; all trees are represented, and the structure of

the spectrum is already quite interesting.

The third regime is the super-critical one, with pn = α
n , α ≥ 1. As α → 1,

the size of the largest tree approaches O
(
n

2
3

)
. For α > 1, the largest

component has size g(α)n, where g(α) is a monotonic function growing from

0 at α = 1. (The largest tree component follows the same bound as with

α ≤ n: O
(

1
1−α log n

)
) This is the �giant component�, which, as α grows,

gradually absorbs all others. All but o (n) of the remaining vertices still

belong on trees, and the estimates on the number of tree components of

various sizes continue to hold. Incidentally, it follows that g(α) is given

by 1−{fraction of vertices on trees} (as estimated using Theorem 2.1, say).
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With regards to the spectrum, this means that trees contribute a non-zero,

but decreasing in α, fraction of the eigenvalues.

As pn → log n
n , the graph becomes more and more connected; for pn ≥ log n

n ,

almost every graph is connected, with the exception of O (1) vertices. The

trees disappear, from largest to smallest, when α = O (log n): a graph with

pn ∼ log n
kn almost surely has trees only of order ≤ k. The distribution of the

number of such trees is, again Poisson.

More recently, Rogers and Bray [5] showed that if α → ∞ (such as the

logarithmic growth above), the spectrum of G(n, α
n ) approaches the Wigner

semicircle with proper normalization in the limit n →∞. So, for all α →∞,

the limiting spectral distribution, normalized by 1√
α
, is bounded. Another

noteworthy recent result is due to Krivelevich and Sudakov [11], who showed

that the largest eigenvalue in this model is (1 + o (1))max(
√

∆, α), with
o (1) decaying as max(

√
∆, α) → ∞. Thus, while the normalized limiting

spectrum is bounded, the normalized spectra for �nite n are certainly not

bounded as n →∞ (with α →∞). Thereafter, Khorunzhy [6] proved that if
α

log n →∞, and the model is modi�ed to put zero-mean weights on the edges,

the normalized distributions for �nite n are a.e. uniformly bounded as well.

In other words, putting zero-mean weights on the edges of a graph eliminates

the gap between the bulk of the spectrum and the largest eigenvalue. We

will see this in our numerical experiments in �4.1.

Remark. According to our Proposition 3.2, we can always modify ξ so that

it has mean 0, and the same limiting spectrum.

Khorunzhy and Vengerovsky have a preprint [3] that explores the asymp-

totics of a random graph's limiting spectrum using moments, much like the

present paper. However, we develop much �ner estimates. Their paper fea-

tures a fairly complex recursion relation for the moments of the limiting

spectrum of a random graph with α = 1. Finding a way to analyse that

expression could lead to better asymptotics of the moments.

Physical methods (most of which are, unfortunately, not rigorous) have

proven remarkably successful in analysing the spectrum of sparse matrices.

The paper by Rogers and Bray [5] additionally shows that the asymptotic

behavior for the density of the tail of the spectrum of G(n, α
n ), α �nite, is(

x2

eα

)−x2

; our asymptotic upper bound for the tails has essentially the right

form, but has some unnecessary constant factors in both the base and the
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exponent. Another remarkable result from a paper2 Semerjian and Cuglian-

dolo [13] derive an approximation for the spectrum of the giant component

that is remarkably accurate numerically. Unfortunately, there is little hope

that it will yield a mathematically rigorous result.

Up to this point we discussed primarily random graphs, for two reasons.

The �rst is that, with suitable assumptions on the distribution of the matrix

entries, many random graph results imply similar results about the sparse

matrix spectrum. This is how we approach the problem in �3; �matrices�

in the title of the paper should be considered an afterthought � all our

results originate on graphs. The second reason is that random graphs have

a beautiful theory of the discrete spectrum, which largely disappears (see

the discussion of our numerical results in �4.1) when continuous random

variables are chosen for ξ.

3. Moments of the Spectral Distribution

We wish to study the spectra of n×n sparse matrices as n →∞. In other

words, we would like to study the random variable λn: a uniformly chosen

eigenvalue (out of the n) for some matrix drawn out of Sn. This is a well-

de�ned construction for a �nite n. Our �rst result is that the distribution of

λn converges weakly to some λ. We approach the problem using the moments

of λn. The kth moment is EMn,k = Eλk
n = E 1

n

∑
λ of A λk = E 1

n TrAk;

thus, to get a handle on λ, we would like to study

EMk = lim
n→∞

Eλk = lim
n→∞

E
1
n

Tr(Ak).

Let B = Ak = (bi,j); then E 1
n Tr(Ak) = E 1

n

∑n
i=1 bi,i. Thus, it is su�cient

to calculate the diagonal elements of Ak:

(2) bi1,i1 =
n∑

i2,...,ik=1

ai1,i2ai2,i3ai3,i4 · · · aik−1,ikaik,i1

We will use this approach to address the following basic questions about

Mk. Our proofs will be be primarily concerned with sparse graphs, but we

discuss bounded and general sparse matrices as well.

(1) What are the requirements for the Mk to be de�ned and �nite for all

k? In other words, when does a limiting spectrum exist?

(2) Does the spectrum of a single large matrix approximate the limiting

spectral distribution of the ensemble?

2Which also, amusingly, presents a physicist's re-derivation of some results by E-R.
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(3) How fast does the density decay as λ → ±∞?

3.1. Finiteness of limiting moments. Consider the subset of the terms

of the summation for TrAk (see (2)), Sl = {ai1,i2ai2,i3 · · · aik,i1}, with the

property that exactly l of the ij are distinct. For instance, with k = 3,
n = 3, l = 2, some valid terms are:

x1 = a1,2a2,2a2,1, x2 = a2,3a3,2a2,2, x3 = a3,1a1,1a1,3.

Clearly, the Sl partition the entire set of terms used in the summation.

Consider some ai1,i2ai2,i3 · · · aik,i1 ∈ Sl. We label the l distinct indices

m1, . . . ,ml in the order they occur. So, for x1, m1 = 1,m2 = 2, and we

can write it as x1 = am1,m2am2,m2am2,m1 . Under this transformation, x3 is

written in the same way (with m1 = 2,m2 = 3): am1,m2am2,m2am2,m1 , or

1 2 2 for short. Thus, we have an equivalence relation on Sl, which, in turn,

partitions Sl into equivalence classes Ci,l (i an index). We may now write

(3) EMk =
∑

l=1..k

∑
Ci,l⊂Sl

lim
n→∞

1
n

∑
x∈Ci,l

Ex.

An equivalence class is the set of all terms gotten by plugging distinct mi

into an expression like this: am1,m2am2,m3 , am3,m1 , am1,m4am4,m1 . However,

we showed above a much more convenient notation; out of ami,mj , we only

need to record i, since the rest of the information is duplicated. Then, our

somewhat longer example becomes becomes 12314 in the abbreviated form.

Call an unordered pair of adjacent numbers in the abbreviated form a step

(note that the last and the �rst entry should also be treated as adjacent).

Let Di,l be the number of distinct steps in Ci,l; Di,l is 4 (out of a maximum

of 5) in our example: 1 2, 2 3, 1 3, 1 4. Looking back at a term of the TrA

summation belonging to Ci,l, a step is just a reference to a particular entry of

the matrix (pairs are unordered since the matrix is symmetric). Thus, every

x ∈ Ci,l uses l distinct indices and refers to Di,l distinct matrix entries.

Finally, let dj , j = 1, . . . , Di,l be the multiplicities with which the distinct

steps occur (in our example: 1, 1, 1, 2). Then, the contribution of x to the

trace is given by:

Ex =
Di,l∏
j=1

Pdj
α

n
,

where Pk is the kth moment of the distribution of the ξ.
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2

1

Figure 1. The walk corresponding to the equivalence class 1 2 2 1.

Since the sum of the trace goes over all combinations of indices, |Ci,l| =
n(n− 1)(n− 2) · · · (n− l + 1) = n!

(n−l)! . For l �xed, this expression is ∼ nl as

n →∞. So, we may write

(4) ECi,l = lim
n→∞

1
n

nl

Di,l∏
j=1

Pdj
α

n
=

Di,l∏
j=1

Pdj
α

( lim
n→∞

nl

nDi,l+1

)
Consider the abbreviated form of Ci,l: v1 v2 v3 . . . vk. We may view it as

a closed walk of length k on a graph (with loops allowed) of l vertices (see

our example in Figure 1).

Notice that Di,l speci�es the number of edges used by the walk; a walk,

by de�nition, uses edges that form a connected graph G. The expression in

(4) has a non-zero limit only if Di,l + 1 ≤ l. This is only possible if G is a

tree, and in that case, we have equality. Therefore, the limit expression in (4)

converges to 0 or 1. Therefore, the Ci,l that don't correspond to closed walks

of length k on trees disappear from (3). We call the remaining equivalence

classes Tl, where l designates the number of vertices in this class's trees. We

can thus rewrite (3) as follows:

(5) EMk =
∑

l=1..k

∑
Wi,l⊂Tl

Di,l∏
j=1

Pdj
α

This expression is independent of n, and the Pdj
are �nite. Therefore, this

expression is a �nite constant for all k.

Proposition 3.1. The Mk are well-de�ned and �nite for all k. (holds for

Sn)

The observation that the Wi,l must go over trees gives a more surprising

result:

Proposition 3.2. M2k+1 = 0 for all k. (again, holds for Sn)
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Proof. This follows from the fact that a closed walk on a tree must meet

every edge an even number of times. Thus, it is impossible to have a closed

walk with an odd length on a tree, and the sum in (5) goes over an empty

set.

Note also that dj ≡ 0 mod 2 also means that only the even moments of

ξ a�ect the limiting spectral distribution. �

Hence, the spectrum of a sparse matrix is always even.

We have shown that the moments of λn do converge. However, we do

not yet know if these moments determine a distribution, or whether it is

unique. This is exactly the classical moment problem; we have a sequence

of moments Mk ≥ 0, and we would like to know if there exists a unique

probability measure with such moments. In 1922, Carleman proved that a

su�cient condition is
∞∑

k=1

M
− 1

2k
2k = ∞.

This requires an upper bound on the growth rate of M2k, which we shall

derive in �3.3.

3.2. Limiting behavior of a matrix's spectrum. λn is drawn randomly

from the whole ensemble of eigenvalues of Sn. This gives no guarantees about

the behavior of individual matrices. Indeed, the ensemble could split into a

number of large classes of matrices, with totally di�erent spectral distribu-

tions that, when combined, give the moments that we observe. Below, we

show that this cannot be, since limn→∞VarMk = 0. Thus, a single large

matrix approximates the limiting spectral probability; more formally, a.e.

sequence of {λn} converges weakly to λ.

We begin by computing EM2
k = E 1

n2 (TrAk)2. Let C = {Ci,l} be the set
of all equivalence classes de�ned earlier. Ci,l ∈ C can be viewed as a path on

a graph, and we will single out T ∈ C, which are paths on trees. Multiplying

the trace with itself term-by-term gives us the following:

(6) lim
n→∞

EM2
k = lim

n→∞

1
n2

 ∑
T1,T2∈C,
both trees

∑
s1∈T1,
s2∈T2

s1s2 +
∑

NT1,NT2∈C,
not both trees

∑
s1∈NT1,
s2∈NT2

s1s2


We argue similarly to �3.1. Consider the second term: say NT1, NT2 have

l1, l2 distinct edges respectively. Without loss of generality, assume NT1 is

not a tree; then, it has ≤ l1 vertices; on the other hand, NT2 has ≤ l2 + 1
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32

1

Figure 2. The walk 12b3bb13bb. The "back" edges are dotted.

vertices. As in �3.1, the contribution of the s1 and s2 together is c
nl1+l2

(c

constant in n), but there are ≤ nl1+(l2+1) choices of the pair (s1, s2). This

means the contribution of the inside sum for every pair (NT1, NT2) is at

most of the order of cn. As noted before, the number of equivalence classes

of size k does not depend on n, so the second summand of (6) altogether is

of the order of C
n , and thus vanishes in the limit.

The remaining term can be rewritten as:

∑
T1,T2∈C,
both trees

lim
n→∞

 1
n

∑
s1∈T1

s1

 1
n

∑
s2∈T2

s2


Each of the two products is of order of 1 in n, as we argued in the previous

section. Hence, they can be split into a product of limits, which evaluates

to (as in (4)) (ET1)(ET2). Thus, we have:

lim
n→∞

EM2
k =

∑
T1,T2∈C,
both trees

(ET1)(ET2) =

(∑
T∈C

ET

)2

=
(

lim
n→∞

EMk

)2

i.e. limn→∞VarMk = 0.

3.3. Asymptotics of the moments. In order to estimate the speed of

the distribution's decay, we would like to have some asymptotic estimates

of the moments. We �rst bound the moments of matrices in the sparse

graph ensemble Gn. From the preceding discussion it follows that the 2kth

moment is exactly the number of closed walks of length 2k on plane rooted

trees, in which new vertices/edges are encountered left-to-right. We can't

have more than k edges, so these paths have the obvious interpretation as

a proper subset of the 2k-long strings of numbers from 1 to k (representing

the edges).

A key observation is that the edges that move back towards the root are,

for purposes of counting, indistinguishable. Consider the walk in Figure 2.

The back edges, when written in string notation, are uniquely determined.
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Therefore, we needn't label them at all; however, we do need the positions

to distinguish between 12bb and 1b2b.

First, we count the number of sequences without back edges (there is

always a valid placement of the k back edges, as we shall see later). Thus,

we want the number of k-sequences consisting of 1 . . . l, 1 ≤ l ≤ k, such

that new numbers occur in order (equivalence classes have this property

by construction); we call these proper k-sequences. This is equivalent to

the number of ways of dividing k labeled objects into l unlabeled subsets.

This number is exactly the Stirling number of the second kind, Sk,l. The

desired total is therefore
∑k

l=1 Sk,l, which is shown in [4] to be asymptotically

Ak = bkeb−k− 1
2√

log k
, where b satis�es b log b = k − 1

2 (for comparison, this is

asymptotically less than
(

k
log k

)k
).

Now, we are given k numbers, and need to insert back edges. Alternatively,

we need to choose the placement of the k numbers into 2k slots � the empty

slots will be back edges. That quantity would be
(
2k
k

)
; however, there is an

extra constraint. There cannot be more back edges than labeled edges up

to position i, for all i. In other words, the numbered edges and the back

edges need to form a balanced parenthetical expression; the number of such

expressions is exactly the kth Catalan number, Ck = 1
(k+1)

(
2k
k

)
∼ 4k

(k+1)
√

πk
.

This gives us an upper bound: M2k ≤ 4kAk

(k+1)
√

πk
.

To get a lower bound, notice that every proper k-sequence corresponds to

a unique 2k-walk on a star. To see this, insert a back edge after every real

edge. For example, 1121232 becomes 1b1b2b1b2b3b2b, which is a 14-walk on

a 3-star. So, the number of equivalence classes is at least
∑k

l=1 Sk,l ∼ Ak.

Thus, we have a fairly tight range for the asymptotic behavior of M2k:

(7) LbM2k = Ak . M2k .
4kAk

(k + 1)
√

πk
= UbM2k.

Numerical results from �4.2 suggest that the true growth rate is Akx
≈2.3,

so the upper bound could be substantially improved.

One hypothesis that would provide such an improvement is as follows.

When a proper k-sequence uses all k vertices, all the Ck possible insertions

of back edges are valid. It is easy to see that if a k-sequence uses k − 1
distinct vertices, there are at most Ck−1 valid ways of inserting the back

edges. We believe that this can be generalized to sequences with l distinct

vertices, to yield the following:
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Conjecture 3.3. M2k is bounded from above by the Stirling transform of

the Catalan numbers, SCk =
∑k

l=0 Sk,lCl, which is (by numerical estimates)

≈ (1.47k + 1)Ak.

This is sequence A064856 in Sloane's encyclopedia [10], and an exponential

generating function (albeit rather complex) is known. We believe it would

be possible to come up with a good asymptotic upper bound for SCk.

With or without the conjecture, Mk = o
(
k

k
2

)
, and so the Carleman

condition (as discussed in �3.2) becomes:

∞∑
k=1

M
− 1

2k
k �

∞∑
k=1

(
2kk
)− 1

2k =
∞∑

k=1

(2k)−
1
2 = ∞

Hence, Mk determine the distribution uniquely. Now, suppose that our

matrices are drawn out of Bn, with α not necessarily 1. Assuming that ξ

is not identically zero, having a bounded distribution implies that ∃c1 > 0
such that the moments Pk ≤ Ack. Recall (5):

EMk =
∑

l=1..k

∑
Wi,l⊂Tl

Di,l∏
j=1

Pdj
α

Since
∑

dj = k, we have,
∏Di,l

j=1 Pdj
≤
∏Di,l

j=1 Acdj = ADi,lc
P

dj = ADi,lck.

Now consider (Aα)Di,l ; if Aα ≥ 1, this is bounded from above by (Aα)
and from below by Aα. The whole expression is then between Aα(ck) and
(Acα)k; if Aα < 1, these bounds are reversed. The important point is that

in the case of general α, and matrices from Bn, both UbM2k and LbM2k

from (7) are modi�ed only by CDk, for some constants C and D.

This has several consequences; �rstly, that means that the distribution is

still determined by the moments. Secondly, the lower bound on the moments

Mk � k
k

2+ε is super-exponential, so the distribution has in�nite support.

Finally, we can get non-trivial estimates of the asymptotic tail probailities,

both for Gn and Bn. Let P (u) be the limiting spectral measure; then,

(8)

∫ ∞

x
dP (u) ≤ 1

x2k

∫ ∞

x
u2kdP (u) ≤ 1

x2k

∫ ∞

−∞
u2kdP (u) =

M2k

x2k

For simplicity of calculation, we bound Ak by
(

k
log k

)k
; we will speci�cally

treat the case Aα ≥ 1, so M2k ≤
(

4Acαk
log k

)k
; will further write the constant

simply as C. We wish to minimise (8), but we may minimize its logarithm
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instead: gk = log M2k

x2k = k
(
log Ck

log k − 2 log x
)
. gk has just one critical point

in k, and a minimum at that, since both X = x2k and Y =
(

Ck
log k

)k
are

monotonic, Y grows much faster than X (and for �xed large x, there is an

interval (1, c) in which X is larger). The critical point is at (we discard 1
log k

since it's negligible for large enough k):

dgk

dk
= log

Ck

log k
− 1

log k
+ 1− 2 log x = 0

⇒ log
Ck

log k
= 2 log x− 1

⇒ Ck

log k
=

x2

e
and k ∼ x2

Ce
log

x2

Ce
.

In the last step, we used the fact that the Lambert W function W (x),
de�ned by W (x)eW (x) = x, is asymptotically equal to log x (There are more

precise asymptotics, but we choose to avoid the complexity).Therefore, our

minimal upper bound for (8) is:

M2k

x2k
=

(
Ck

log k

)k
x2k

=

(
x2

e

)k
(x2)k

= e−k ≈ e−
x2

Ce
log x2

Ce =
( x2

Ce

)− x2

Ce

It is possible to produce similar bounds for matrices in Sn that have ξ with

su�ciently slowly growing moments, but this is an unenlightening technical

exercise, and we refrain from doing so.

4. Computational Results

4.1. Computing spectra. The �rst numerical experiment we carried out

was to compute and plot the spectra of large random matrices. To this end,

we wrote a short C program that used LAPACK (http://www.netlib.org/

lapack/) routines to compute eigenvalues (see Appendix A for the code).

We computed the spectra of random graphs on 800 vertices for a number

of sub- and super-critical (< or > 1) values of α. Actually, the results in

Figure 3 were obtained by using graphs with equiprobable weights of ±1 on

the edges. However, as we pointed out in �3.1, ξ = ±1 and |ξ| = 1 produce

equivalent limiting spectra.

The practical motivation for this weighing is that, for �nite n and ξ > 0
(by Krivelevich-Sudakov) the highest eigenvalue comes either from the star

of highest degree, or from the average degree; for relatively small values of

α (α < log
1
2 n ≈ 2.6), the star dominates, and the square root of the degree
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Figure 3. Numerical approximations of spectra of random
graphs at di�erent values of α; these are logarithmic-scale in
y (to show detail) plots of histograms , with the exception
of the α = 12.0 and 15.0, which have both logarithmic and
non-logarithmic versions. The horizontal scales are as follows:
�rst row � [−3, 3], second row � [−3.8, 3.8], third row � [−6, 6],
fourth row � [−8.5, 8.5].

lands well within the observed bulk: there are lots of other stars with similar

degrees. However, when we transition to the super-logarithmic regime, the

graph becomes almost regular, the average degree exceeds the square root of

the maximum, and we see the associated a spectral gap: one eigenvalue of

every matrix becomes detached from the bulk. This would lead to us seeing

a bump of measure 1
800 (very noticeable even on a linear scale) well to the

right of the bulk. To avoid this extra noise, we chose to use a zero-mean

random variable instead (in the spirit of [6]). (We did get experimental

con�rmation that ξ = 1 behaves exactly the same up to 2.6, and onwards,

if one is to ignore the spectral gap) Later, we present two experiments with

non-mean-zero r.v., which follow the prescribed pattern exactly.
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Figure 4. Numerical approximations of spectra of random
graphs with uniform (in [0,1]) weights on edges at di�erent
values of α; all these are logarithmic-scale (to show detail)
plots of histograms.

We clearly see discrete atoms comprising the entire spectrum for sub-

critical α, and then gradually see the giant component part of the spectrum

gain in prominence. While the discrete part of the spectrum becomes in-

distinguishable at this resolution after α = 7.0, it never goes away entirely,

if n → ∞ and α is constant (sublogarithmic, in fact, see [7]) relative to n.

Observe that at α = 15, the histogram resembles a semicircle as expected

according to [5]. A somewhat unexpected feature of the graphs is the drastic

dip near 0 for low values of α. A theoretical investigation of this phenomenon

is presented in �5. Using our upper bound for the tails of the distribution, we

consistently overestimate the expected ranges of the histograms by a factor

of ≈ 5.6; we expect that a factor of 2 comes from our ovestimation of UbM2k

by a factor of around 4k; the other 2.8 must be due to the crude technique

we used to compute the tail probabilities.

We performed similar experiments with non-trivial distributions for n =
800 (and n = 600 for some), and s ranging from 0.2 to 11. The three

distributions are U1
0 � the uniform density on [0, 1], a sum of two independent

U1
0 (a triangular density from 0 to 2), and the standard normal distribution.

The former is in Figure 4, while the latter two are in Figure 5a and b.
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We discuss the coarse features of Figure 4, but a similar analysis is ap-

plicable to the others. For subcritical α, there is a prominent spike at zero,

and a box-like protrusion between ±1. The zero δ-function originates from

primarily from disconnected vertices (which, as in r.g.s give a 0 eigenvalue);

however, the 3-vertex path also has a zero eigenvalue, no matter the edge

weights. The combined contribution, if computed according to �4.3, predicts

the observed height of the spike well. Meanwhile, the box is produced by the

single-edge components: a component with weight x gives eigenvalues ±x,

which perfectly matches the �box� 's location. All three small trees persist for

supercritical α, but in reduced numbers. The giant component apparently

also contributes some analog of these trees, as discussed in �4.5, as the peak

and �box� in the supercritical case are larger than predicted by small trees

alone.

As noted earlier, for super-logarithmic values of α, we observe an increas-

ing spectral gap, with the largest-eigenvalue bump precisely 1
n in measure.

The highest eigenvalue appears to approach α EU1
0 as expected, but we

didn't try α large enough to be sure. Another question that we cannot an-

swer is whether/when the limiting spectrum becomes continuous in these

cases; the answer probably requires a grasp of how dense the δ-functions in

the spectrum of an r.g. are.

The case of the triangular density is very similar to the uniform one, and

merits no further discussion. The Gaussian, predictably, gives smoother

densities. Also as expected, the zero peak for various α is the same as that

in the preceding cases.

4.2. Computing moments. We used an unsophisticated recursive search

to calculate the �rst few M2k for testing asymptotics, as well as to contribute

entry A094149 to Sloane's encyclopedia [10] of integer sequences. The �rst

13 M2k are: 1 3 12 57 303 1747 10727 69331 467963 3280353 23785699

177877932 1368977132. Our program searches for ordered-�rst-occurrences

number sequences that have l − 1 distinct steps, and use l numbers (formu-

lation from �3). It uses a few simple constraints to make searches reasonably

fast. Refer to Appendix A for the code. The main constraint for comput-

ing further terms with the program is that simply counting them will take

too long. Khorunzhy's [3] recurrence relation should be able to go farther if

implemented properly.
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Figure 5. Numerical approximations of spectra of weighted
random graphs on edges at di�erent values of α; all these are
logarithmic-scale (to show detail) plots of histograms. The
top row's weights are sums of two [0,1] uniform variables.
The bottom row's weights are standard Gaussian.

4.3. The discrete spectrum. From the previous sections, we know that

a sparse graph consists of a giant component (for α ≥ 1 only), and a large

number of small tree components. The contributions of non-giant, and non-

tree components to the spectrum vanish in the limit n →∞. Since there are

countably many trees, and each gives only a �nite number of eigenvalues,

there is a countable set of eigenvalues produced by small trees (size bounded

a.e by O(log n), except at α = 1). We call this the discrete spectrum. By

Theorem 2.1, if Tk is the number of tree components of size k, then the

distribution of Tk−E Tk√
Var Tl

rapidly converges to N(0, 1), the standard Gaussian,

where

ETk ∼ n
kk−2αk−1e−kα

k!

VarTk ∼ ETk
1 + (α− 1)(kα)k−1e−kα

k!
Note that the variance is linear in n. Thus, if we consider experiments

producing n× n matrices, Tk
n will rapidly converge to a constant as n →∞.

Another observation is that E Tk
n decays quite rapidly in k for all α. Therefore,
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α
K 0.4 0.8 1.0 1.3 1.7 3.0

∞ 1 1 1 0.5770 0.30882 0.05952
10 0.9976 0.8898 0.7545 0.52866 0.30469 0.05952
20 ≈ 1 0.95182 0.82403 0.55961 0.30848 0.05952
25 ≈ 1 0.96519 0.84217 0.56553 0.3087 0.05952
30 ≈ 1 0.97403 0.85566 0.56916 0.30878 0.05952
50 ≈ 1 0.99036 0.88779 0.57493 0.30881 0.05952
Table 1. FK for di�erent values of K and α; K = ∞ denotes
the fraction of eigenvalues accounted for by tree components.

if we compute the eigenvalues of Tk for k small, we will have a good lower

bound on the discrete spectrum. Every tree in Tk has k eigenvalues, so each

class contributes nkk−1αk−1e−kα

k! eigenvalues. There are n eigenvalues total,

and the fraction of the eigenvalues given by trees up to size K is therefore

FK =
K∑

k=1

kk−1αk−1e−kα

k!
.

Table 1 shows values of FK for several values of K and α. As we see, we

can capture a very reasonable fraction of the eigenvalues given by trees by

working at K = 25 (the highest value achievable with only a few hours of

computation time).

We will iterate over all t ∈ Uk, the set of unlabeled trees of size k. For a

given t, we compute: a � the size of its automorphism group, and λ1, . . . , λk

� its eigenvalues. Then, t occurs k!
a times in the set of k-vertex labeled

trees, so the expected number of copies of t in our r.g. is wt = k!
akk−2 ETk

(where kk−2 is the number of labeled trees). Thus, we add λ1, . . . , λk to the

distribution as δ-functions of weight wt. This distribution, when computed

on Uk, k = 1 . . .K, will be our lower bound for the spectrum.

Our implementation uses a new tree enumeration algorithm, which pro-

vides automorphism group sizes. The eigenvalues are simply combined into

a high-resolution histogram. The latter decision (over more �ne-grained

storage � like hashing and combining the delta-functions) makes for easy

implementation, and easy comparison with numerical results from the �4.1.

4.4. Tree Generation. We will list unlabeled, unrooted (free) trees � what

graph theorists usually mean by a tree. The number an of such trees of size

n was �rst studied by Cayley and later by Pólya, who produced a generating

function for an, and a general apparatus for enumerating sub-classes of trees.
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(a) (b)

(c) (d) (e)

Figure 6. Illustrating how canonical rooted form trees break
into arbitrary rooted trees. Black vertices denote the roots.

Otter proved in [8] that an ∼ BAn

n5/2 , with A ≈ 2.9557653 and B ≈ 0.5349496.
The sequence has no known nice form, and so it is perhaps surprising that one

can enumerate the corresponding objects in O (an) time � the best possible.

We will present two algorithms for generating trees. Refer to Li-Ruskey [9]

for a history of the tree generation problem.

The observation underlying both algorithms is that a free tree can be

made rooted in a canonical way. Consider the following de�nition:

De�nition 4.1. The center C of a graph G is the set of vertices v such that

the maximum distance (along a path) from v to any other vertex achieves

the smallest value possible in this graph:

C(G) = {v|v ∈ V (G), max
w∈V (G)

d(v, w) = min
a∈V (G)

max
b∈V (G)

d(a, b)}.

It is an easy fact that all trees have |C(T )| = 1 or 2, such trees are called

unicentral and bicentral, respectively. If we have a unicentral tree T , selecting

the center as the root gives a unique rooted tree (the canonical rooted form).

In the bicentral case, the trick is to use some ordering of the rooted trees

(we shall obtain one later). Then, let T1 and T2 be the rooted trees gotten

by making either of the two center vertices the root. We de�ne the canonical

rooted form of T to be the larger of T1, T2 in our ordering. With that, we

have a 1-1 correspondence between free trees and canonical rooted trees.

Hence, it is enough to generate canonical rooted trees. Suppose T is a

canonical rooted form of a bicentral tree (refer to Figure 6a for an example).
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Figure 7. Comparing two trees of height 4. The two largest
subtrees are equal, and so the second largest subtrees dictate
that the top tree is larger; the last (dashed) comparison isn't
actually done.

Delete the edge separating the two centers; let each center be the root of the

corresponding component (Figure 6b). Note that we must get two rooted

trees of the same height3. Conversely, we can glue together any two rooted

trees of the same height to get a bicentral tree, with the original roots as the

two centers. Using our ordering, we pick the correct center as the root for

the composite tree, and we have a canonical rooted form (CRF). Similarly,

to produce4 unicentral trees, we delete the edge between the root and one of

the tallest components, getting two trees of heights di�ering by one (Figure

6e).

Thus, our problem is reduced to generating unlabeled rooted trees with

height restrictions, and gluing them back together. This is what the two

algorithms do di�erently.

4.4.1. Listing trees: the Li-Ruskey algorithm. The algorithm we present �rst

is due to Li and Ruskey [9], and is optimal both in terms of speed � O (an)
and space � O (n) (which is negligible, considering that it isn't practical to

do computations on, i.e., the ≈ 3.5× 1014 trees of size 40). It is not the �rst

algorithm with these properties, but it is much shorter than the predecessors.

Nonetheless, it is rather tricky to understand, and the original paper does a

poor job of explaining it. This paper attempts to rectify this.

3Height is exactly what it sounds like � the largest distance from the root to another
vertex.
4This way of decomposing bicentral and unicentral CRF is used by Li-Ruskey. Our algo-
rithm just deletes the root, as in Figure 6d.



22 ALEXEY SPIRIDONOV

The �rst step is to introduce an ordering on rooted trees. There are two

equivalent formulations of the rule. As an algorithm (assuming T1 6= T2):

if height(T1) < height(T1), then T1 < T2; otherwise, compare the subtrees

(hanging from the root) going from largest to smallest in this ordering (ap-

plied recursively). Then we say that the smaller of the two trees is whichever

of T1, T2 has a smaller subtree �rst. An illustration of the comparison process

is in Figure 7.

For the other statement, we need to de�ne a parent array. First, we

de�ne the parent of vertex i: the adjacent vertex on the path from i to the

root. Analogously, the children of the vertex i are the neighbors that are

not on the path from i to the root. Consider a tree T of size n, labeled

with the numbers 1 . . . n. Then, the parent array is the sequence of numbers

a1, . . . , an, where ai is equal to the label on i's parent; the parent of the root

is labeled �0�. Figure 8b shows a parent array for the labeling in Figure 8a.

We also de�ne a depth-�rst labeling of a tree: we traverse the tree, starting

at the root, labeling previously unvisited vertices 1 . . . n sequentially, in the

following manner. If the current node i has any unvisited children, we pick

one, and visit it (recursively). Otherwise, we return to the parent of the

current node. (for example, see two labelings in Figure 8a, c)

To get our ordering, consider all of T 's depth-�rst labelings. Pick the

one that has the maximum (lexicographally) parent array; this will be the

parent-array representation, par(T ). Then, T1 < T2 ⇔ par(T1) < par(T2),
where parent arrays are compared lexicographically. The process of �nding,

and comparing parent-array representations (PARs) is illustrated in Figure

8. Observe that the outcome of the comparison is the same as that of the

previously described depth-based recursive comparison algorithm.

The PAR is associated with a speci�c depth-�rst labeling (which, noted

before, is obtained by a recursive traversal of a tree: start at the root, and

upon arriving at any vertex, visit all its children before returning to the

parent). We can use this labeling to draw trees in a canonical way. The

rule is to draw the tree so that the depth-�rst traversal visits the children of

every vertex from left to right (making it a pre-order traversal). Equivalently,

the subtrees of every vertex are drawn in decreasing order fom left to right.

Figures 6 and 7 show trees in this format, as will most �gures to follow. This

way of drawing makes it easy to tell which of two trees is larger.

The �rst key idea for the algorithm is that we can construct a tree T of

all rooted trees. Observe that if we remove the last entry of par(T ) (denoted



SPECTRA OF SPARSE GRAPHS AND MATRICES 23

0 1 2 2 1 5 6 1 8parent

vertex 1 2 3 4 5 6 7 8 9

34

25

1

7

6 76

52

1

3

4

0 1 2 3 1 5 5 1 8PAR

1

2 5 8

7643 9 10

0 1 2 2 1 5 5 1 6 6 PAR

0 1 2 2 1 5 1 7 8

0 1 2 1 4 4 1 7 8 

0 1 2 1 4 5 1 7 7

0 1 2 3 1 5 1 7 7 

PAs for the other labelings:

9

8

9

8

(b)(a) (c)

Figure 8. The top half of the �gure lists the parent arrays
resulting from all non-equivalent depth-�rst traversals of the
given tree. The largest of these is marked by boldface type,
and PAR, denoting that it is the parent-array representation
of the tree. The lower half of the �gure shows another tree
and its PAR, which, despite having more vertices, is less than
that of the �rst tree.

Figure 9. The tree of rooted trees up to size 5. Children of
each rooted tree are arranged in decreasing order from left to
right.
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Figure 10. The result of repeatedly adding new vertices at
the lowest possible point, ρT . Black circles denote the root
and the last added vertex. Gray circles denote all new ver-
tices.

par(1 . . . n−1), the parent array for vertices 1 . . . n−1), we still have a PAR
of a smaller tree T ′. Therefore, we can consider T ′ to be the parent of T .

Clearly, by a sequence of such steps, every PAR is reduced to just 0, the
parent array of the single-vertex tree. We thus get the tree of all rooted

trees in Figure 9; notice that we arranged the children of every vertex from

largest to smallest, going left to right.

We now want to traverse T in a simple way. To do this, we consider

the relationship between the children of a given tree on n vertices (i.e. the

children of the 3-path in Figure 9): we see that, from left to right, the vertex

n is attached progressively higher along some path to the root. Indeed,

suppose we start with a tree T on n − 1 vertices, and can get a PAR on n

vertices by appending p to par(1 . . . n−1). Then, par(1 . . . n−1)+par(p) is
also a PAR � when n moves up, all the (right-most at every level) subtrees

that contained it become smaller. In other words, the action of picking up

the last (labeled n) vertex, and moving it up one towards the root creates

another valid PAR with the pre�x par(1 . . . n− 1). Therefore, to get all the

children of a tree, we need only �nd the lowest (farthest from the root) valid

point ρT for attaching a vertex.

So, to traverse T , we need to know:

(1) How ρT changes when we append a vertex to T at that point.

(2) How ρT changes when we shift the last vertex up, towards the root.

To answer the �rst question, consider what happens when we keep adding

a vertex to a tree as low as possible. This is illustrated in Figure 10. We

observe that this procedure repeatedly copies a certain subtree. (Excluding

the sequence of paths on the very left of T , which is a degenerate case) While

we shall not formally prove it, it is quite straightforward to check that the

subtree Tc is determined by the following requirements:
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(1) Let t be the root of Tc. Then t's parent pc is on the path from ρT

to the root. t is the next-to-rightmost child of pc. (so, the root of

smallest subtree that isn't the one under construction)

(2) The subtree T ′ rooted at the rightmost child of pc (the copy of Tc

under construction) can be completed to become Tc. More formally,

par(T ′) is a pre�x of par(Tc).
(3) Tc is such that pc is as close to the root as possible, while ful�lling 1

and 2.

Say that Tc tree is rooted at t, and has size s. If we have just put in the �nal

vertex in the current copy of Tc, then ρT = pc = par(t), since we are starting
a new copy. The current copy is complete only when vertices n− s . . . n− 1
are all in it, with n− s being the root; when the current copy is incomplete,

n− s is a non-root vertex in the previous copy. (The arithmetic follows from

our labeling scheme). When n− s is the root of a Tc copy, par(n− s) = pc,

which is less than s, being its parent. (in all other cases, par(n− s) ≥ s) So,

if par(n− s) < s, we have ρT = par(t).
If we haven't just �nished a copy of Tc, we just want to copy the next

vertexs. The counterpart (in the previous subtree) of the vertex we just

added (labeled n− 1) is n− s− 1; in the previous subtree, n− s was added

next. Therefore, ρ should be the counterpart of par(n − s) in the current

subtree. So, ρ = par(n− s) + s.

Remark. If pc is the parent of several subtrees isomorphic to Tc, it does not

matter which one we use in the above algorithm.

It remains to see what happens to ρT when the last vertex (labeled n) gets

shifted up towards the root (question 2). We will �gure out what happens

to t and s after this shift, and use the preceding discussion to get ρ. Let

p = par(n) before the shift. Then, after the shift, par(n) = par(p), and
the tree rooted at p clearly satis�es criteria 1 and 2 for being Tc. Suppose

there is a vertex p′, higher up the path than par(p), with a subtree T ′c also

satisfying these criteria. Then, its rightmost subtree T ′ (the presumed tree

under construction) is its pre�x. However, by shifting n up, we have made

T ′ smaller than what it used to be. Since it's currently a pre�x, T ′ prior to

the shift was larger than T ′c, which is a contradiction. Therefore, t = p, and

s = n− t.

Putting all of this together, we get the elegant piece of code in Algorithm

1. It clearly spends a constant amount of time on each node of the tree

T (the loop goes over the children). Therefore, it runs in time O (an ≤ n),
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Algorithm 1 A C implementation of the Li-Ruskey algorithm for listing
rooted trees of order N . It is invoked as gen(1, 0, 0); no initialization is
necessary.

void gen(int n, int t, int s) {

if (n > N) print_it();

else {

if (s == 0) par[n] = n-1; /*left-most path in T*/

else {

if (par[n-s] < t) par[n] = par[t]; /*new copy*/

else par[n] = c + par[n-c];

}

gen(n+1, t, c); /*add a vertex at rho*/

while (par[n] > 1) { /*move the last vertex up*/

t = par[n];

p[n] = par[t];

gen(n+1, t, n-t);

}

}

}

which, using Otter's asymptotics is O (an = n). It only uses O (n) storage,
and the call stack has the same memory requirement. Thus, this code is

optimal in both time and space. Its only limitation is that the enumeration

is restricted to a speci�c order (decreasing in our ordering). Random-access

algorithms (akin to Prüfer codes) for unlabeled tree enumeration are the

major open problem in the subject. Unfortunately, it appears very di�cult,

since the number of unlabeled (rooted or free) trees of a given size does not

have a natural correspondence with any nice set.

We now return to free trees; our treatment may di�er somewhat from

Li-Ruskey. It is also not as detailed as the preceding discussion, since this

extension of the algorithm is a matter of implementation, rather than con-

ceptual development. Refer to the Li-Ruskey paper [9], or their production

program available at: http://www.theory.csc.uvic.ca/~cos/inf/tree/

FreeTrees.html for working implementations. Recall that, given a canon-

ical rooted form of a tree T , we can delete the edge from the root to the

largest (left-most) subtree (as in Figure 6b and e). We then get two rooted

trees Tl, Tr such that height(Tl) + 1 = height(Tr) = height(T ) if T was

unicentral, and height(Tl) = height(Tr) = height(T )− 1 if T was bicentral.

Suppose we are asked to produce all free trees on n vertices. The strategy

will be to use Algorithm 1 to generate Tl with appropriate restrictions, and
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then, instead of calling print_it(), to generate Tr in a similar manner. The

maximum height of an n-vertex CRF is
⌊

n
2

⌋
, so Tl will have height at most⌊

n
2

⌋
− 1. Note that if height(Tl) = h, then Tr will have height at least h

as well, and will require ≥ h + 1 vertices. Thus, Algorithm 1 requires some

modi�cations, so that it neither exceeds the available number of vertices, nor

the available height in the search. Observe that the height only grows in the

very left-most path down T , when s == 0. We add two parameters: m for

available size, and h for available height, update them appropriately, and,

whenever either reaches 0, we proceed to generate Tr.

Suppose Tl was of height h and used m vertices. Then, Tr must have height

h + 1 (unicentral) or h (bicentral), and use the remaining n − m vertices.

We modify Algorithm 1 very similarly, except that that we �rst walk down

the left-most path in T to the depth we need, and then only perform �add

vertex� operations that do not increase depth.

In the unicentral case, we must have the largest subtree of Tr be at most

(in our ordering) Tl. To solve this, we arrange for Tl to be produced as

the left-most (�rst in the parent array) subtree of T , then set the modi�ed

Algorithm 1 to complete the tree (with the root of T as the root of Tr). This

works, since the algorithm only produces canonical trees.

On the other hand, in the bicentral case we want to produce a CRF, which

means that (the entire) Tr ≤ Tl. This is also easy enough to achieve: to the

un�nished T containing Tl, we add a vertex at the root, to act as the root

of Tr. Then, the algorithm again produces the desired tree, and a simple

manipulation on the parent array is needed to remove the fake root.

The realization of these ideas for gluing rooted trees is tricky and tedious;

it is probably easiest to start with two separate routines (one producing Tl,

and calling the next to produce Tr). However, both will have Algorithm 1 as

the skeleton, and can be combined with some care. Both implementations

cited above use a single recursive routine.

We will not argue why the added constraints for producing free trees do

not a�ect the running time of the algorithm. The main observation is that

there are no late-pruned dead ends in the recursion: if some branch of search

tree doesn't contain any valid trees, we know that at its root.

4.4.2. Listing trees: constrained concatenation. Prior to �nding the Li-Ruskey

algorithm, we had designed a simpler one. It also runs in linear time, but it

stores a substantial number of trees. Without going into the detailed analysis

(which, as we shall see, would involve counting trees of a number of sizes and
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n 15,21,27 16,22,28 17,23,29 18,24,30 19,25,31 20,26,32

used 625 1321 2822 6115 1.3× 104 3× 104

×savings 5.05 5.86 6.85 7.95 9 11
used 7× 104 1.6× 105 4.0× 105 9.5× 105 2.3× 105 1.2× 107

×savings 12 13 14 15 17 20
used 2.7× 107 6.3× 107 1.4× 108 1.4× 108 3.3× 108 8.1× 108

×savings 23 27 31 37 45 49
Table 2. The approximate number of trees our algorithm
stores to compute all trees up to size n, compared with the
number of trees of size n− 1.

depths), Table 2 gives rough estimates of the space requirements for various

tree sizes. Given that our program uses 16 bytes per tree, trees up to order

30 (of which there are ∼ 2.3 × 1010) are easily accessible on modern work-

stations. On the other hand, performing non-trivial computations on that

many trees would take on the order of months. Thus, for our purposes, this

method is perfectly practical. The table shows space savings as compared to

an algorithm by Read referred to in [9]. That algorithm is viable up only to

n = 25, so we've achieved a substantial improvement.

The main merits of our approach are as follows: it is practical, it is con-

structive (as compared to Li-Ruskey), it gives the size of the automorphism

group of our trees (something we need) practically for free, it is fast (takes

2 minutes to count trees of size 27), and it is relatively easy to implement.

Consider, as before, the canonical rooted form of a free tree on n vertices.

Now, delete the root vertex. We are left with a number of rooted trees. Let

the two largest trees be T1 and T2, and suppose T1 has height h. Since we are

dealing with a CRF, either height(T2) = h, or height(T2) = h− 1. Suppose
T1 has height h. Then, T1 and T2 together use at least 2h+1 vertices; hence

2h + 1 ≤ n − 1 ⇒ h ≤ n
2 − 1. Additionally, no component can have more

than n− 1− h vertices (minus the root, minus the size of T2). So, we want

all rooted trees of height 1 having 1 . . . n−2 vertices, trees of height 2 having

1 . . . n − 3 vertices, ..., trees of height
⌊

n
2

⌋
− 1 having

⌈
n
2

⌉
vertices. This is

the quantity estimated in Table 2.

To make these rooted trees, we will use an inductive construction. First,

we de�ne an ordering. Suppose an order on rooted trees of size < n has been

de�ned, and size(T1) = n. We use the following ordering: height(T1) <

height(T2) ⇒ T1 < T2; otherwise size(T1) < size(T2) ⇒ T1 < T2; otherwise



SPECTRA OF SPARSE GRAPHS AND MATRICES 29

1

3

0

2

size 3 size 4 size 5 size 6

size 3 size 5

size 4 size 5

size 2

size 1

H
ei

gh
t

size 4

Figure 11. The ordering used by the constrained concate-
nation algorithm (if read top-to-bottom, left-to-right).

delete the roots of both, and compare the components from largest to small-

est (lexicographically). Figure 11, read from top to bottom, left to right,

illustrates the rule.

Now assume that we have all required trees up to size n − 1, organized
thus: for each height, we have a list of trees in increasing order. (exactly

as in Figure 11). As an optimization, we keep for every height an index of

where each size begins. This allows easy access to trees of a speci�c height

and size, and, if one traverses the list sequentially, the index tells us what

size tree we are at (so we don't have to store it).

To build a tree of size n, we select a largest component (trying each in

order, from the one-vertex tree to the maximum available depth and size).

This reduces the available size, and possibly height. We select the next

component, so that it �ts in the available size and height, and does not

exceed the previous component. We try the valid trees in increasing order

also. We repeat this until we run out of vertices (and we can have n − 1
vertices on components). Thus, we get a non-increasing sequence of subtrees,

which clearly is a canonic representation for a rooted tree. Notice that in

this algorithm, we never try components that don't work. Hence, it is linear

in the number of trees we enumerate. A compact implementation is shown in

Algorithm 2. It is invoked with increasing values of n, with trivial updates

to the size index between invocations. The algorithm uses a bit string to
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Algorithm 2 The constrained concatenation algorithm for rooted trees.
The Tree type is simply a bit string (say 64-bit integer). l[h] is the list of
trees of height h, in order. si is the size index: si[h][n] gives the index in
l[h] at which the size n+1 begins; it is updated between calls to the routine.

void rootedsearch(int n, int cur_h, int max_h,

int max_i, Tree t)

{

if (n == 0) { listAdd(l[cur_h], t < < 1); }

else {

int i, h, maxi, maxh = min(max_h, n - 1);

for (h = 0; h <= maxh; ++h) {

int size = h + 1, new_h = max(cur_h, h + 1);

if (h < max_h) maxi = si[h][n];

else maxi = min(si[h][n], max_i);

for (i = 0; i < maxi; ++i) {

if (i == si[h][size]) ++size;

rootedsearch(n - size, new_h, h, i + 1,

t < < (2*size) | l[h]->data[i]);

}

}

}

}

store a parenthetical expression representing the rooted tree5. See Appendix

A for a complete program using this routine.

Using this approach, the sizeA of the root-stabilizing automorphism group

of a rooted tree is very easy to get. As we are composing the list of sub-

trees T1, . . . , Tk, we know the size of each automorphism group a1, . . . , ak

(by induction). All of these give independent (in the direct product sense)

automorphisms of T , which contributes
∏

ai to A. We can have additional

automorphisms if Ti = Ti+1 for some i. Since Ti are added in increasing

order, it is very easy to �nd how many duplicates of each there are. Suppose

there multiplicities are m1, . . . ,ml,
∑

mi = k; then, A =
∏

ai
∏

mi. To

compute this requires a very simple modi�cation to Algorithm 2, which is

incorporated into the �nal program in Appendix A.

Moving on to free trees, we use exactly the same approach as for rooted

trees: look at the tree without the root, and produce an ordered list of

5For example, the �rst size 2, height 5 tree in Figure 11 has parenthetical representation
((())()()), corresponding to the bit string 1110010100. So, the bit arithmetic in the code
simply concatenates such strings to record the addition of a new component. This compact
realization of trees was chosen for ease of storage and speed of concatenation (arrays would
be much more unwieldy, despite the �exibility).
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subtrees. However, we are generating a canonical rooted form, so there are

extra constraints. Firstly, we require a special case to make sure that the

largest two subtrees don't di�er in height by more than one. Secondly, a

bicentral tree must use the larger of its two representations. This means

that if we delete the edge connecting the two centers, getting Tl (the largest

component) and Tr (the rest), we must have Tl ≥ Tr. To achieve this in

the code, after choosing Tl, we create the list of its subtrees T1, . . . , Tk after

deleting the root. Then, while adding more components (which will comprise

Tr) to T , we check that the sequence never exceeds Ti lexicographically.

This means keeping a �ag for whether this constraint is still necessary � the

requirement disappears as soon as we add the �rst subtree to Tr that's strictly

smaller than the corresponding Ti. If the constraint is still necessary, we walk

our data structure (l, si) up to the available size, depth, not exceeding the

previous component, and not exceeding the current Ti. These two extra

requirements make the algorithm produce valid CRF trees. Computing A
is exactly the same as for rooted trees, except that if bicentral trees are

symmetric around the center, they need an extra factor of 2. Symmetry

means exactly that Ti = the corresponding subtree of Trfor all i; so, we

multiply by 2 if this constraint checking was necessary till the end of the

construction of the tree.

The extra constraints added for free tree generation don't add any dead

branches in the search tree, and take a constant time to check for every free

tree produced. Therefore, this algorithm runs in linear time. See Appendix

A for the a complete, working implementation.

4.5. Spectrum lower bounds. Using our constrained concatenation al-

gorithm, we iterate over all t, compute their eigenvalues using LAPACK,

compute the contribution of these eigenvalues as in �4.3, and add these to

a histogram. We present a comparison of the lower bound with the full

spectrum in Figure 12 for a supercritical and subcritical value of α. For

α = 0.8, the di�erence between the spectra (c) is very noisy (all the noise

of the Monte-Carlo approximation is made visible), since it is plotted on a

scale ≈ 150× smaller than (a) and (b). It also shows that a larger fraction of

the missing density comes from the fringes (the plot is less curved); we need

larger trees to get these eigenvalues. For α = 1.7, the scale is reduced only

≈ 7×, and so the noise isn't much ampli�ed. Rather, we have cancelled out

the vast majority of the discrete spectrum (99.9%), so what remains comes

from the giant component.
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Figure 12. Comparing the full spectrum with the lower
bound of the discrete spectrum for two values of α: 0.8 and
1.7. All plots are on a natural-log scale in y, with x ∈ [−4, 4].
In (a), (b), (d), (e), log y ∈ [0, 14]; in (c), log y ∈ [0, 9]; in
(f), log y ∈ [0, 12]. (a) & (d) are the lower bound plots for
K = 25 and 23 respectively. (b) and (e) are full spectra; (c)
and (f) are di�erences between the two preceding ones.

Despite lacking tree components, the histograms in (f) has large spikes at

0, ±1, ±
√

2, . . . , much like the discrete spectrum. Informally, α = 1.7 is not

long after the emergence of the giant component; at this stage, we expect

it to locally look like a tree, having branches that are exactly small trees.

Then, eigenfunctions that restrict their action to that branch would produce

the spikes we observe. A similar e�ect might be responsible for the drop in

density around 0. We conjecture that for all α constant in n, the limiting

spectrum of the giant component has a non-zero discrete part, resembling

the discrete spectrum produced by trees. To the best of our knowledge, this

problem is completely unexplored. It would also be interesting to �nd in

what growth regime of α the discrete spectrum of the g.c. disappears. Here,

we conjecture that it will happen at, or before the disappearance of the tree

discrete spectrum at α ∼ O (log n). Proceeding in the same vein, is the
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elimination of the two discrete spectra su�cient for the limiting distribution

to become continuous with respect to the Lebesgue measure?

4.6. Other observations. On perusing the numerical results, we noted sev-

eral other regularities which warrant theoretical treatment. The spectrum

of trees is always symmetric; proving this is trivial. Observe that trees are

bipartite (pick a v ∈ T , there is a unique path from v to any other u ∈ T ;

divide the vertices into two sets based on the value of length(v, u) mod 2).
Given an eigenvalue λ of a bipartite G with eigenfunction ev, reverse the sign

of ev on one of the two parts; that gives a new eigenfunction with eigenvalue

−λ.

If one considers the smallest positive eigenvalue among all trees of size

k, it turns out to occur on paths for k even, and on paths with a 1-edge

split at the end (− · · · − /
\) for k odd. This enables to calculate what this

eigenvalue is, precisely. We treat this observation in �5.2. A �nal remark

is that the spectrum of any tree of size k appears to necessarily included in

the spectrum of another tree of size k + 4. Proving this conjecture might be

interesting.

5. The Neighborhood of 0

Figures from the previous section show a prominent atom at 0, and a

spectacular drop in the height of delta-functions as one approaches zero from

either side. The zero spike was analysed by Bauer and Golinelli. As for the

decline in height, we can develop a theoretical (conjectural at the moment)

upper bound on the δ-functions of the discrete spectrim near 0 by following

the numerical observations.

5.1. Number of zero eigenvalues on all trees of a �xed size. In [12],

Bauer and Golinelli derive an explicit formula, a generating function and

an asymptotic approximation for zk � the number of zero eigenvalues (with

multiplicity) in all trees of size k. Their approach uses two methods. First,

they characterize the number of zero eigenvalues Z(F ) in a given forest F

using a specialization of the method in �5.2.1. This is quite easy; however,

they then use this characterization to cleverly rewrite Z(F ) as a sum of a

simple quantity over induced subtrees of the forest. Armed with that iden-

tity, the rest of the paper uses fairly standard techniques from enumerative

combinatorics to produce its results.
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According to this paper, the expected multiplicity of the zero eigenvalue

in a tree of size k is EZk = (2x∗ − 1)k + x2
∗(x∗+2)
(x∗+1)3

+ O
(

1
k

)
. As before, the

expected number of trees componets of size k in G(n, α
n ) is nkk−2αk−1e−kα

k! .

So, the asymptotic (in k) contribution of trees of size k to the δ-function at

zero is (2x∗ − 1)kk−1αk−1e−kα

k! + x2
∗(x∗+2)
(x∗+1)3

+ O
(

1
k

)
. We could have used this

(or even the explicit formula) to improve our estimates in �4.5, if the extra

precision was worth the e�ort.

5.2. Relation between tree size, and least positive eigenvalue (LPE).

The basic problem is: over the collection of trees on k vertices, what is

the non-zero eigenvalue of least magnitude? (by the symmetry of the tree

spectrum identical to the least positive eigenvalue) Once we have this in-

formation, we can use the estimate on Tk from Theorem 2.1 to predict the

maximum measure of an atom in (−ε, ε) for small ε > 0.

5.2.1. Characteristic polynomials of trees. In this section we introduce a

(fairly standard) tool for working with characteristic polynomials (CPs), and

prove some easy lemmas (with the goal of proving that the LPE occurs on

walks/forked walks). We will call the coe�cient of xi of a polynomial ai.

Find a degree 1 vertex (which always exists) in the tree, and expand

the determinant by the row corresponding to it (without loss of generality,

rearrange the matrix to the presented form):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1 0 . . . 0

1 −x ∗
...

0
. . .

...
. . .

...

0 . . . . . . −x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −λ

∣∣∣∣∣∣∣∣∣∣∣

−x ∗ . . .
...

. . .

. . .
...

. . . −x

∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣
1 ∗ . . .

0 −x . . .
...

...
. . .

...

0 . . . −x

∣∣∣∣∣∣∣∣∣∣
.

The �rst determinant in the right-hand side is clearly the CP of the tree

with the degree 1 vertex deleted (called T ′). The second rhs determinant can

be expanded along the �rst column to get, again, a CP of a subtree (now with

two vertices deleted, called T ′′). The relation is much more comprehensible

in pictorial form:

x

T’’T’
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The CP of the (however many) disconnected components is quite obviously

the product of the components' CPs. The above relation turns out to be

surprisingly useful in the proof of the following results.

Proposition 5.1. In a CP of a tree of size k, ai = 0 if ai 6= k mod 2. More-

over, the non-zero terms have alternating signs: sgn ak = (−1)k, sgn ak−2 =
(−1)k−1, sgn ak−4 = (−1)k−2,. . . , sgn ak−2j = (−1)k−j,. . . .

Proof. By induction. The single-vertex tree I has characteristic polynomial

−x, satisfying both conditions.

Suppose that the claim holds for all trees up to size < n. Then, consider

a tree of size n, and expand its CP using the above relation. Consider the

second term of the rhs, cp T ′′: it is the product of CPs of smaller trees, with

a total of n − 2 vertices. We need to show that CPs of two trees satisfying

the claim multiply properly. Suppose A and B are CPs from trees of size

l,m < n, with coe�cients ai and bi; then the non-zero terms in AB will have

power of parity l + m mod 2. Additionally,

sgn abl+m = sgn al sgn bm = (−1)l+m;

sgn abl+m−2 = sgn al−2 sgn bm ⊕ sgn al−2 sgn bm = (−1)l+m−2;

sgn abl+m−2j =
j⊕

i=0

sgn al−2i sgn bm+2i−2j = (−1)l+m−2.

x ⊕ y simply signi�es that if x and y have the same sign, then x + y

has the same sign (otherwise, it would be unde�ned, but we don't have

this problem). So, indeed, two CPs �tting the claim multiply to produce

another polynomial �tting the claim. Hence, cp T ′′ has non-zero terms only

with powers of parity (n − 2) ≡ n mod 2. The signs on the terms are:

sgn an−2−2j = (−1)n−2−j ; however, the expression is negated, so the signs

become: sgn am−2(j+1) = (−1)n−(j+1), which is what we want. �

The �rst term of the rhs is just (cp I)(cpT ′), of size 1 and n − 1. By

induction, and by the preceding discussion, the product is of the right form

for a tree of size n. Clearly, the sum of the two parts �ts the claim as well.

Corollary 5.2. CPs of odd trees have a factor of x.

Lemma 5.3. If a tree has even size and a0 6= 0, then |a0| = 1.

Proof. Again, we proceed by induction. The CP of the two-vertex tree is

x2 − 1.
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Suppose the CP of all even-sized trees < n either has a factor of x, or

has |a0| = 1. Given a tree of size n, we expand its CP as before. The �rst

term has a factor of x, and so makes no di�erence. If any of the forest's

components has a factor of x, a0 = 0. Otherwise, they all have |a0| = 1, and
so does the forest, and so does the whole tree.

It's very easy to come up with examples to show that the analog for odd

trees and a1 does not hold. �

5.2.2. Conjectures about the LPE. This section explores possible ways of

proving that among trees of size 2k, the LPE comes from the path, and for

2k + 1, the LPE comes from the forked path. In this section, speculation

abounds, and claims shouldn't be taken as fact unless said otherwise.

Suppose that we have an integer-coe�cient polynomial of degree 2n, with

a0 6= 0, and having only even powers. Moreover, suppose that its signs are

�xed so that a0 is positive, a2is negative, etc. Notice that both even and

odd tree CPs can be brought into this form by appropriately multiplying by

-1 and dividing by x. If we wish to make it have a root as close to zero as

possible, while having limitations on the magnitude of the coe�cients, we

can use the following argument. a0 should be 1, since otherwise we would

need a greater derivative (and greater coe�cients) to get to zero faster. a2

should be as negative as possible. We want |a4| to be as small as possible, |a6|
as large as possible, etc. However, a2 is most important, since the remaining

terms have a factor of x4or more, which reduces their contribution drastically

for small x.

Conjecture 5.4. The minimum possible magnitude of any ai 6= 0 for a CP

of a tree is exactly i + 1.

This was observed from computation. This means that odd trees can't

actually get a0 = 1 when reduced to the above form. This complicates

matters substantially; moreover, it means that trees of size 2k + 1 needn't

necessarily give a lower LPE than trees of size 2k. We used a program in

Appendix A to show LPE(2k + 1)>LPE(2k) for trees of size ≤ 25; this is
probably true in general (assumingConjecture 5.6bonus, this follows from the

results of �5.2.3). So, odd trees are altogether unnecessary for the bounding

the decay of peaks near zero. From now on, we only talk about even trees.

Conjecture 5.5. For a CP of a tree of size 2k,
∣∣a2(k−i)

∣∣ ≤ ( 2k−i
2(k−i)

)
. This

maximum is achieved ∀i by the 2k-walk. (The second part is easy to prove,

see �5.2.3).
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This might be useful, but to show that the path produces the LPE, it is

essential to have control over the ratio ai+2

ai
; especially for the �rst i such

that ai 6= 0. The terms of higher order of smallness (with extra factors of x4

and larger) should be easier to control. Clearly, the control over the ratios

a�orded to us by Conjectures 5.4 and 5.5 is insu�cient. Estimating upper

bounds on the ratios between adjacent non-zero coe�cients is a probably a

good direction to explore in order to prove:

Conjecture 5.6. The LPE on trees of size 2k occurs on the 2k-path.

Bonus: The LPE on trees of size 2k + 1 occurs on the forked 2k-path.

5.2.3. Conditional calculation of the LPE. Here, we assume that Conjecture

5.6 is true, and calculate the eigenvalue explicitly. To do this, let b1, . . . , b2n

be an eigenfunction of the eigenvalue λ for the 2n-path. Then, λbk−1 =
bk + bk−2 with the constraint that b2 = λb1 and b2n−1 = λb2n.

Suppose λ = 0; then, b2 = 0, so 0 · b3 = b2 + b4 ⇒ b4 = 0, . . . , b2n = 0.
But, then b2n−1 = 0 as well, and, propagating backwards: 0 ·b2n−2 = b2n−3+
b2n−1 ⇒ b2n−3 = 0, . . . , b1 = 0. So, 0 is not an eigenvalue. We also want to

show that b1 6= 0. Suppose otherwise; then b2 = 0, so λ ·0 = 0+b3 ⇒ b3 = 0,
etc. Thus, we can renormalize all our eigenfunctions to have b1 = 1, and
b2 = λ.

Finally, suppose λ = 2; then b2 = 2, 2 · 2 = 1 + b3 ⇒ b3 = 3; inductively,
2 · (i− 1) = (i− 2) + bi ⇒ bi = i. But, then b2n−1 = 2 · b2n ⇒ 2n− 1− 4n =
0 ⇒ n = −1

2 , which is absurd. Analogously, if λ = −2, bi = i(−1)i+1, so we

get n = 1
6 .

Now, we solve the recursion relation bk − λbk−1 + bk−2 = 0. The corre-

sponding polynomial equation x2 − λx + 1 = 0 has roots

x1 =
λ +

√
λ2 − 4
2

, x2 =
λ−

√
λ2 − 4
2

.

Consequently, the general solution to the recurrence is bk = c1x
k
1 +c2x

k
2, and

in particular c1x1 + c2x2 = 1, c1x
2
1 + c2x

2
2 = λ. Writing these out, we get:

(c1 + c2)λ + (c1 − c2)
√

λ2 − 4 = 2

c1(λ2 + 2λ
√

λ2 − 4 + λ2 − 4) + c2(λ2 − 2λ
√

λ2 − 4 + λ2 − 4) = 4λ

⇒ 2λ
(
(c1 + c2)λ + (c1 − c2)

√
λ2 − 4

)
− 4(c1 + c2) = 4λ
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Simplifying, we get c1 = −c2 = −c. We must also have λc(x2n
1 − x2n

2 ) =
λb2n = b2n+1 = c(x2n−1

1 − x2n−1
2 ); rewriting, we have x2n−1

1 (λx1 − 1) −
x2n−1

2 (λx2 − 1) = 0.
Recall that x1 + x2 = λ, and x1x2 = 1. We can then write λx1 − 1 =

(x1 + x2)x1 − 1 = x2
1 + x1x2 − 1 = x2

1, and the same for x2. The �nal

constraint is x2n+1
1 + x2n+1

2 = 0, which is equivalent to x2 = γx1, where γ

is a 2n + 1st root of unity (excluding 1, which would lead to x1 = x2 = 0,
which is impossible). Also, x1x2 = x2

1γ = 1 ⇒ x2
1 = γ2n. So, x1 = ±γn and

x2 = ±γn+1. This gives us all the eigenvalues: λ = ±(γ + γ) = 2 Re γ =
±2 cos( πk

2n+1), for k = 1..n. Thus, the lowest positive eigenvalue of a 2n-path

is then 2 cos( πn
2n+1).

By a more tedious calculation, we get that the lowest eigenvalue for the

forked path with 2n + 1 vertices is 2 cos(π(2n−1)
4n ).

As we remarked in Conjecture 5.5, it is possible to inductively multiply

out the (x − λ1) · · · (x − λn) to get
∑k

k=0(−1)k−i+2
(

2k−i
2(k−i)

)
x2(k−i) as the

characteristic polynomial.

6. Future Directions

To recapitulate, it would be exciting to prove the conjectured improvement

to the upper bound on M2k, or, better yet, to prove an upper bound that does

not overestimate by an exponential factor. Ideally, we would like a result

that allows us to match [5] for the tail probabilities. The lowest positive

eigenvalue conjectures from �5 are interesting as well, while Conjectures 5.4

and 5.5 don't seem to have much independent interest.

Very little is known (rigorously) about the spectrum of the giant compo-

nent; our numerical results indicate that it has a discrete component. Is this

a strange artifact, or do they exist? Are they δ-functions? If they exist, is

it possible to prove Erdös-Rényi style theorems about the parts of the com-

ponent that originate them? Can we �nd the total weight on these atoms?

If we subtract the discrete spectrum (from trees and from the giant com-

ponent, if any), is the remainder absolutely continuos with respect to the

Lebesgue measure (numerically, it seems quite smooth and well behaved)?

Is it possible to �nd an analytic expression for this part of the spectrum?

There are also a few interesting questions that don't directly relate to

this paper. Is the discrete spectrum dense in the real line? Does it cover

all algebraic numbers? Do eigenvalues of arbitrary �nite graphs cover all

algebraic numbers?
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Appendix A. Implementation and text on CD-ROM

Please see the �le README on the included CD-ROM. The �le documents

the programs, and provides instructions for compiling them on a UNIX-like

operating system. The CD-ROM also contains an electronic (PDF, DVI,

and PostScript) version of the paper. The author will be available for com-

ments and questions at aspirido@alumni.princeton.edu (starting Septem-

ber, 2004).
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